
Quality Week 2001, San Francisco, California, USA, June 2001 Suresh Nageswaran

1 Copyright(c) 2001, Cognizant Technology Solutions
All rights reserved.

Test Effort Estimation Using Use Case Points

Suresh Nageswaran
Cognizant Technology Solutions,

National Games Road,
Yerwada, Pune – 411006.

Maharashtra, India
(+91-020) 669 19 60

SureshN@pun.cognizant.com
SureshN@iname.com

Abstract

This paper presents a new approach to the
estimation of software testing efforts based on
Use Case Points [UCP] as a fundamental
project estimation measure. From preliminary
applications on our web-based projects, we
conjecture that this could in fact be more
reliable than FP. The caveat here is that the V-
model must be in use and use case generation
must start becoming available right at the
requirements gathering phase. The acceptance
test plan is then prepared with the use cases
from the requirement documents as input.
Further work could provide a more exact
relationship between the two.

Introduction

Probably the most crucial difference between the
manufacturing industry and the software industry
is that the former is able to stick to schedules
most of the time. The reason why software
development schedules are so unpredictable is
not because workers in this industry are lazy or
incompetent. To estimate the time make a
product from scratch, and in many cases, without
prior experience of the technology is no mean
feat. However, conventional estimation
techniques address only the development effort
that goes into it.

It is known that a use case to test case mapping
is possible. This means that the UCP figure for
development can be indirectly used to provide a

figure for the number of test cases. Using
organizational test execution time metrics it is
now possible to arrive at a figure for the total test
effort. This is a viable and systematic approach
towards test effort estimation and it makes a leap
in providing more realistic figures. This means
that the cost of testing can now be factored into
projects. The other advantage is that test
engineering gets treated as a process and not
simply as another lifecycle phase.

Software Test Engineering

Test Engineering covers a large gamut of
activities to ensure that the final product achieves
some quality goal. These activities must be
planned well in advance to ensure that these
objectives are met. Plans are based on
estimations.

In the early years, the Waterfall model has been
applied to software development. This model
looks upon test engineering as merely a stage in
the entire development lifecycle. When
techniques evolved over the years for estimating
development time and effort, the concept of
estimating test-engineering time was overlooked
completely.

Test engineering is seldom planned for in most
organizations and as a result, products enter the
market insufficiently tested. Negative customer
reactions and damage to the corporate image is
the natural consequence.

To avoid this, the correct development lifecycle
must be chosen and planning should be done
early on in the cycle.

mailto:SureshN@pun.cognizant.com
mailto:SureshN@pun.cts-corp.com

Quality Week 2001, San Francisco, California, USA, June 2001 Suresh Nageswaran

2 Copyright(c) 2001, Cognizant Technology Solutions
All rights reserved.

Software Project Estimation

According to Rubin [2], the stage-wise effort
distribution on software projects is as shown in
the pie chart below.

Estimation is basically a four-step approach:

1. Estimate the size of the development
product. This is either in LOC [Lines of
Code] or FP [Function Points]. The concept
of using UCP [Use Case Points] is still in its
infancy.

2. Estimate the effort in person-months or
person-hours.

3. Estimate the schedule in calendar months.

4. Estimate the cost in currency.

Conventional Approach to Test
Effort Estimation

Test engineering managers use many different
methods to estimate and schedule their test
engineering efforts. Different organizations use
different methods depending on the type of
projects, the inherent risks in the project, the
technologies involved etc.

Most of the time, test effort estimations are
clubbed with the development estimates and no
separate figures are available.

Here is a description of some conventional
methods in use:

1. Ad-hoc method

The test efforts are not based on any
definitive timeframe. The efforts continue
until some pre-decided timeline set by
managerial or marketing personnel is
reached. Alternatively, it is done until the
budgeted finances run out.

This is a practice prevalent in extremely
immature organizations and has error
margins of over 100% at times.

2. Percentage of development time

The fundamental premise here is that test
engineering efforts are dependent on the
development time / effort. First,
development effort is estimated using some
techniques such as LOC or Function Points.
The next step is using some heuristic to peg
a value next to it. This varies widely and is
usually based on previous experiences.

This method is not defendable since it is not
based on any scientific principles or
techniques. Schedule overruns could range
from 50 – 75% of estimated time. This
method is also by far the most used.

3. From the Function Point estimates

Capers Jones [1] estimates that the number
of test cases can be determined by the
function points estimate for the
corresponding effort. The formula is

Number of Test Cases = (Function Points) 1.2

The actual effort in person-hours is then
calculated with a conversion factor obtained
from previous project data.

The disadvantage of using FP is that they
require detailed requirements in advance.
Another issue is that modern object-oriented
systems are designed with Use Cases in
mind and this technique is incompatible with
them.

Quality Week 2001, San Francisco, California, USA, June 2001 Suresh Nageswaran

3 Copyright(c) 2001, Cognizant Technology Solutions
All rights reserved.

Use Cases

Alistair [5] has this description of a use case:

A use case captures a contract between the
stakeholders of a system about its behavior. The
use case describes the system’s behavior under
various conditions as it responds to a request
from one of the stakeholders, called the primary
actor. The primary actor initiates an interaction
with the system to accomplish some goal. The
system responds, protecting the interests of all
the stakeholders. Different sequences of
behavior, or scenarios, can unfold, depending on
the particular requests made and conditions
surrounding the requests. The use case collects
together those different scenarios.

Mapping Use Cases to Test Cases

Use cases in their most primitive forms are
basically representative of what the user wants
from a system. The advantages of Use Cases are
that they start becoming available early on in the
project lifecycle. The appropriate project
lifecycle model is the V-Model. The figure
below illustrates the same.

The model clearly has one test engineering
activity associated with a corresponding
development activity. The topmost rung of the
model associates the business requirement
identification with the acceptance plan
preparation. Each successive step makes sure
that the test documentation becomes complete
and comprehensive. If the estimation process is
fitted in the second rung after the business
requirements are available, it is obvious that use
cases will serve as the inputs.
The identification of the number of test cases
here can be made quite directly. Each scenario

and its exception flows for each use case are
input for a test case. Subsequently, the
estimation calculations can commence.
As the requirements become clearer further
downstream, the estimates will also undergo
revision.

UCP Approach to Estimation

Estimation using UCP [Use Case Points] is
rapidly gaining a faithful following. The
approach for estimation using UCP only needs
slight modification in order to be useful to
estimate test efforts.

1. Determine the number of actors in the
system. This will give us the UAW – the
unadjusted actor weights.

Actors are external to the system and
interface with it. Examples are end-users,
other programs, data stores etc.
Actors come in three types: simple, average
and complex. Actor classification for test
effort estimation differs from that of
development estimation.

End users are simple actors. In the context
of testing, end-user actions can be captured
easily using automated tool scripts. Average
actors interact with the system through some
protocols etc. or they could be Data stores.
They qualify as average since the results of
test case runs would need to be verified
manually by running SQL statements on the
store etc. Complex users are separate
systems that interact with the SUT through
an API.

The test cases for these users can only be
written at the unit level and involves a
significant amount of internal system
behavioral knowledge.

Actor Weights

Actor Type Description Factor
Simple GUI 1

Average Interactive or
protocol-driver
interface

2

Quality Week 2001, San Francisco, California, USA, June 2001 Suresh Nageswaran

4 Copyright(c) 2001, Cognizant Technology Solutions
All rights reserved.

Complex API / low-level
interactions

3

The sum of these products gives the total
unadjusted actor weights. [UAW]

2. Determine the number of use cases in the
system. Get UUCW.

The use cases are assigned weights
depending on the number of transactions /
scenarios.

Use-case Weights

Use Case
Type

Description Factor

Simple <=3 1

Average 4-7 2

Complex >7 3
The sum of these products gives the total
unadjusted actor weights. [UAW]

3. UUCP = UAW + UUCW

The calculation of the unadjusted UCP is
done by adding the unadjusted actor weight
and the unadjusted use case weights
determined in the previous steps.

4. Compute technical and environmental
factors

The technical and environmental factors for
a test project are listed in the table below.

To calculate one needs to assign weights and
multiply them with the assigned values to
give the final values. The products are all
added up to give the TEF multiplier. The
TEF multiplier is then used in the next step.

Technical Complexity Factor

Factor Description Assigned
Value

T1 Test Tools 5
T2 Documented inputs 5

T3 Development
Environment

2

T4 Test Environment 3
T5 Test-ware reuse 3
T6 Distributed system 4
T7 Performance

objectives
2

T8 Security Features 4
T9 Complex interfacing 5

5. Compute adjusted UCP.

We use the same formula as in the UCP
method for development.

AUCP =UUCP *[0.65+(0.01*TEF)]

6. Arrive at final effort.
We now have to simply multiply the
adjusted UCP with a conversion factor. This
conversion factor denotes the man-hours in
test effort required for a
language/technology combination. The
organization will have to determine the
conversion factors for various such
combinations.

E.g. Effort = AUCP * 20
Where 20 man-hours are required to plan,
write and execute tests on one UCP when
using EJB.

Quality Week 2001, San Francisco, California, USA, June 2001 Suresh Nageswaran

5 Copyright(c) 2001, Cognizant Technology Solutions
All rights reserved.

Example
The project under study is a product support web
site for a large North American software
company. The estimation was done from the
business level use cases made available at the
time of signing the requirements. The actors at
this time were the different types of users
identified in those use cases.

1. UAW Calculation

Actor
No of
Use
Cases

Factor UAW

B2C User 15 2 30

Subscribers 13 2 26

Admin User 4 2 8

Total UAW 64

2. UUCW Calculation

Legend: Simple – S, Average – A, Complex – C, Very
Complex - VC

Use Case Type Factor Reason

Login C 15 Server
integrati
on

Support
Request

VC 20 External
Sys
Query

User
Creation

A 10

Support
Resource
Mgt.

S 5 Code
Reuse

Fix
Notificati
ons

S 5 Trivial

Total 55

3. Calculation of the UUCP - Unadjusted Use
Case Points
UUCP = UAW + UUCW = 64 + 55 = 119

4. Technical factor computation

Fac
tor

Description Assig
ned
Value

Weight Extend
ed
Value

T1 Test Tools 5 3 15
T2 Documented

inputs
5 5 25

T3 Development
Environment

2 1 2

T4 Test
Environment

3 1 3

T5 Test-ware
reuse

3 2 6

T6 Distributed
system

4 4 16

T7 Performance
objectives

2 1 2

T8 Security
Features

4 2 8

T9 Complex
interfacing

5 2 10

Total 87

5. Adjusted UCP calculation

AUCP =UUCP *[0.65+(0.01*TEF)] = 119 *
[0.65+0.01*87] = 180.88

6. Final Effort

Effort = AUCP * Conversion Factor for
COM / DCOM testing
Effort = 180.88 * 13 = 2351.44

Project Complexity needs 15% of the
estimated effort to be added. 10% is spent in
co-ordination and management activity.

Total Effort = 2351.44 + 352.72 + 235.144
= 2939.304 man-hours = 367 man-days

Actual Effort = 390 man-days [Project End]

Quality Week 2001, San Francisco, California, USA, June 2001 Suresh Nageswaran

6 Copyright(c) 2001, Cognizant Technology Solutions
All rights reserved.

Discussion And Future Work

There is never a single silver bullet for every
problem. In the many approaches to test effort
estimation, the UCP approach is one. The author
conjectures that this could become a more robust
method of estimation over a period of time. The
availability of data from past projects will
definitely contribute to the accuracy of these
estimates. The estimation technique is not
claimed to be rigorous, but the approach offers
significant practical advantages over ad hoc
techniques currently in use. Further research and
experimentation will certainly provide more
substantial benefits in arriving at an objective
method to validate the estimates.

References

1. Capers, Jones 1996. Applied software
measurement, McGraw-Hill.

2. Rubin, H. 1995. Worldwide benchmark
project report, Rubin Systems Inc.

3. Kathleen Peters, 1999, Software Project
Estimation.

4. Smith John, The estimation of Effort based
on Use Cases, Rational Software.

5. Cockburn Alistair, 1999, Writing Effective
Use Cases.

6. Dekkers Ton, 1999, Test Point Analysis.

	Test Effort Estimation Using Use Case Points
	
	Abstract

	Introduction
	Software Test Engineering
	Software Project Estimation
	Conventional Approach to Test Effort Estimation
	Use Cases
	Mapping Use Cases to Test Cases
	UCP Approach to Estimation
	
	Actor Weights

	Actor Type
	Use-case Weights

	Use Case Type
	Technical Complexity Factor

	Factor

	Example
	Actor
	
	Factor
	Total UAW

	Use Case
	
	Factor
	User Creation
	
	Total

	Factor
	
	
	
	
	
	Assigned Value

	Total

	Discussion And Future Work
	References

