Descriptive programming in QTP
Introduction:

This document demonstrates the usage of Descriptive programming in QTP 8.20. It also discusses situations where Descriptive programming can be used. Using Descriptive Programming automation scripts can be created even if the application has not been developed.
Descriptive Programming:

Whenever QTP records any action on any object of an application, it adds some description on how to recognize that object to a repository of objects called object repository. QTP cannot take action on an object until unless its object description is in the Object Repository. But descriptive programming provides a way to perform action on objects which are not in Object repository
Object Identification:
To identify an object during the play back of the scripts QTP stores some properties which helps QTP to uniquely identify the object on a page. Below screen shots shows an example Object repository:

[image: image1.png]“ActionT" object repository Name: testPath FEind.
s T Vekmiobn —‘RE =
Fopaies Bepce. |

=81 Page

B testpath Type Property Value =
& 8 browser
=

Ix

T
£ webratle

BB himitag INPUT

¥ Enable St Idertfication Add/Remove.
Configure value

& Constant [iesPath =l

C Barameter

[DataT bRl tesat rame, AGREAhee) =l

|

Add Objects Highight

ObiectSpy.. | I Evport. |7| Cancel Help

Now to recognize a radio button on a page QTP had added 2 properties the name of the radio button and the html tag for it. The name the left tree view is the logical name given by QTP for the object. This can be changed as per the convenience of the person writing the test case. QTP only allows UNIQUE logical name under same level of hierarchy. As we see in the snapshot the two objects in Browser->Page node are “WebTable” and “testPath”, they cannot have the same logical name. But an object under some other node can have the same name. Now with the current repository that we have, we can only write operation on objects which are in the repository. Some of the example operations are given below

Browser("Browser").Page("Page").WebRadioGroup ("testPath").Select "2"

cellData = Browser("Browser").Page("Page").WebTable ("WebTable").GetCellData (1,1)

Browser("Example2").Page("Page").WebEdit("testPath").Set "Test text"

When and Why to use Descriptive programming?
Below are some of the situations when Descriptive Programming can be considered useful:

1. The objects in the application are dynamic in nature and need special handling to identify the object. The best example would be of clicking a link which changes according to the user of the application, Ex. “Logout <<UserName>>”.

2. When object repository is getting huge due to the no. of objects being added. If the size of Object repository increases too much then it decreases the performance of QTP while recognizing a object.

3. When you don’t want to use object repository at all. Well the first question would be why not Object repository? Consider the following scenario which would help understand why not Object repository
Scenario 1: Suppose we have a web application that has not been developed yet. Now QTP for recording the script and adding the objects to repository needs the application to be up, that would mean waiting for the application to be deployed before we can start of with making QTP scripts. But if we know the descriptions of the objects that will be created then we can still start off with the script writing for testing
Scenario 2: Suppose an application has 3 navigation buttons on each and every page. Let the buttons be “Cancel”, “Back” and “Next”. Now recording action on these buttons would add 3 objects per page in the repository. For a 10 page flow this would mean 30 objects which could have been represented just by using 3 objects. So instead of adding these 30 objects to the repository we can just write 3 descriptions for the object and use it on any page.

4. Modification to a test case is needed but the Object repository for the same is Read only or in shared mode i.e. changes may affect other scripts as well.

5. When you want to take action on similar type of object i.e. suppose we have 20 textboxes on the page and there names are in the form txt_1, txt_2, txt_3 and so on. Now adding all 20 the Object repository would not be a good programming approach.
How to use Descriptive programming?

There are two ways in which descriptive programming can be used

1. By creating properties collection object for the description.

2. By giving the description in form of the string arguments.

1. By creating properties collection object for the description.

To use this method you need first to create an empty description

Dim obj_Desc ‘Not necessary to declare

Set obj_Desc = Description.Create

Now we have a blank description in “obj_Desc”. Each description has 3 properties “Name”, “Value” and “Regular Expression”.

obj_Desc(“html tag”).value= “INPUT”

When you use a property name for the first time the property is added to the collection and when you use it again the property is modified. By default each property that is defined is a regular expression. Suppose if we have the following description

obj_Desc(“html tag”).value= “INPUT”

obj_Desc(“name”).value= “txt.*”

This would mean an object with html tag as INPUT and name starting with txt. Now actually that “.*” was considered as regular expression. So, if you want the property “name” not to be recognized as a regular expression then you need to set the “regularexpression” property as FALSE
obj_Desc(“html tag”).value= “INPUT”

obj_Desc(“name”).value= “txt.*”

obj_Desc(“name”).regularexpression= “txt.*”

This is how of we create a description. Now below is the way we can use it

Browser(“Browser”).Page(“Page”).WebEdit(obj_Desc).set “Test”

When we say .WebEdit(obj_Desc) we define one more property for our description that was not earlier defined that is it’s a text box (because QTPs WebEdit boxes map to text boxes in a web page).

If we know that we have more than 1 element with same description on the page then we must define “index” property for the that description
Consider the HTML code given below

<INPUT type=”textbox” name=”txt_Name”>

<INPUT type=”textbox” name=”txt_Name”>

Now the html code has two objects with same description. So distinguish between these 2 objects we will use the “index” property. Here is the description for both the object

For 1st textbox:

obj_Desc(“html tag”).value= “INPUT”

obj_Desc(“name”).value= “txt_Name”

obj_Desc(“index”).value= “0”

For 2nd textbox:

obj_Desc(“html tag”).value= “INPUT”

obj_Desc(“name”).value= “txt_Name”

obj_Desc(“index”).value= “1”

Consider the HTML Code given below:
<INPUT type=”textbox” name=”txt_Name”>

<INPUT type=”radio” name=”txt_Name”>

We can use the same description for both the objects and still distinguish between both of them
obj_Desc(“html tag”).value= “INPUT”

obj_Desc(“name”).value= “txt_Name”

When I want to refer to the textbox then I will use the inside a WebEdit object and to refer to the radio button I will use the description object with the WebRadioGroup object.

Browser(“Browser”).Page(“Page”).WebEdit(obj_Desc).set “Test” ‘Refers to the text box

Browser(“Browser”).Page(“Page”).WebRadioGroup(obj_Desc).set “Test” ‘Refers to the radio button

But if we use WebElement object for the description then we must define the “index” property because for a webelement the current description would return two objects.
Hierarchy of test description:
When using programmatic descriptions from a specific point within a test object hierarchy, you must continue to use programmatic descriptions

from that point onward within the same statement. If you specify a test object by its object repository name after other objects in the hierarchy have

been described using programmatic descriptions, QuickTest cannot identify the object.

For example, you can use Browser(Desc1).Page(Desc1).Link(desc3), since it uses programmatic descriptions throughout the entire test object hierarchy.

You can also use Browser("Index").Page(Desc1).Link(desc3), since it uses programmatic descriptions from a certain point in the description (starting

from the Page object description).

However, you cannot use Browser(Desc1).Page(Desc1).Link("Example1"), since it uses programmatic descriptions for the Browser and Page objects but

then attempts to use an object repository name for the Link test object (QuickTest tries to locate the Link object based on its name, but cannot

locate it in the repository because the parent objects were specified using programmatic descriptions).

Getting Child Object:
We can use description object to get all the objects on the page that matches that specific description. Suppose we have to check all the checkboxes present on a web page. So we will first create an object description for a checkboxe and then get all the checkboxes from the page
Dim obj_ChkDesc

Set obj_ChkDesc=Description.Create

obj_ChkDesc(“html tag”).value = “INPUT”

obj_ChkDesc(“type”).value = “checkbox”

Dim allCheckboxes, singleCheckBox

Set allCheckboxes = Browse(“Browser”).Page(“Page”).ChildObjects(obj_ChkDesc)

For each singleCheckBox in allCheckboxes

singleCheckBox.Set “ON”

Next

The above code will check all the check boxes present on the page. To get all the child objects we need to specify an object description i.e. we can’t use the string arguments that will be discussed later in the 2nd way of using the programming description.

Possible Operation on Description Object
Consider the below code for all the solutions

Dim obj_ChkDesc

Set obj_ChkDesc=Description.Create

obj_ChkDesc(“html tag”).value = “INPUT”

obj_ChkDesc(“type”).value = “checkbox”

Q: How to get the no. of description defined in a collection

A: obj_ChkDesc.Count ‘Will return 2 in our case

Q: How to remove a description from the collection

A: obj_ChkDesc.remove “html tag” ‘would delete the html tag property from the collection

Q: How do I check if property exists or not in the collection?

A: The answer is that it’s not possible. Because whenever we try to access a property which is not defined its automatically added to the collection. The only way to determine is to check its value that is use a if statement “if obj_ChkDesc(“html tag”).value = empty then”.

Q: How to browse through all the properties of a properties collection?
A: Two ways

1st:

For each desc in obj_ChkDesc

Name=desc.Name

Value=desc.Value

RE = desc.regularexpression

Next

2nd:

For i=0 to obj_ChkDesc.count - 1

Name= obj_ChkDesc(i).Name

Value= obj_ChkDesc(i).Value

RE = obj_ChkDesc(i).regularexpression

Next

2. By giving the description in form of the string arguments.

You can describe an object directly in a statement by specifying property:=value pairs describing the object instead of specifying an object’s

name. The general syntax is:

TestObject("PropertyName1:=PropertyValue1", "..." , "PropertyNameX:=PropertyValueX")

TestObject—the test object class could be WebEdit, WebRadioGroup etc….

PropertyName:=PropertyValue—the test object property and its value. Each property:=value pair should be separated by commas and quotation

marks. Note that you can enter a variable name as the property value if you want to find an object based on property values you retrieve during a run session.

Consider the HTML Code given below:

<INPUT type=”textbox” name=”txt_Name”>

<INPUT type=”radio” name=”txt_Name”>

Now to refer to the textbox the statement would be as given below

Browser(“Browser”).Page(“Page”).WebEdit(“Name:=txt_Name”,”html tag:=INPUT”).set “Test”

And to refer to the radio button the statement would be as given below

Browser(“Browser”).Page(“Page”).WebRadioGroup(“Name:=txt_Name”,”html tag:=INPUT”).set “Test”

If we refer to them as a web element then we will have to distinguish between the 2 using the index property

Browser(“Browser”).Page(“Page”).WebElement(“Name:=txt_Name”,”html tag:=INPUT”,”Index:=0”).set “Test” ‘ Refers to the textbox

Browser(“Browser”).Page(“Page”).WebElement(“Name:=txt_Name”,”html tag:=INPUT”,”Index:=1”).set “Test” ‘ Refers to the radio button

Reference:

1. “Mercury QuickTest Professional, User’s Guide, Version 8.0.1”

