Question

How is SQL within PL/SQL dealt with by Form Builder?

Answer

Since PL/SQL blocks in a form can have Form Builder built-ins, we cannot send the whole block to the database.

Form Builder processes the cursors which PL/SQL tells it required for DML operations within PL/SQL within Form Builder.

That means SQL within PL/SQL takes advantage of the techniques to reduced network traffic implemented in 5.0.  These changes dramatically reduce the level of traffic seen using prior versions.

To send entire blocks of PL/SQL to the database, you can:

(1) Use Forms_DDL() built-in to send a lengthy string which makes up a block of code you want  to be executed on the server:

Forms_DDL('BEGIN ... END;');

(2) Call Stored procedures/functions/packages which have the bundled DML inside them and call these stored program units from Form Builder.

Question

How are the constants like INSERT_ALLOWED and PROPERTY_ON dealt with by PL/SQL?

Answer

All of these tokens that you pass to built-ins are numeric constants.  If you write a generic procedure that sets the properties of objects you need to make sure that the parameters passed are typed as NUMBER to ensure that no data type conflicts occur.
Question

If a timer expires during a long running query when is it handled?

Answer

The timer will always wait to be handled until the current operation has been completed.  In other words, the query is completed before the timer is serviced.

Question

If a REPEAT timer expires between a long query, does it repeat prior to being serviced by a WHEN-TIMER-EXPIRED trigger at the end of the query, or does it wait for servicing before repeating?

Answer

A repeating timer will never be restarted until after it has been serviced by an appropriate firing of WHEN-TIMER-EXPIRED.  A simple corollary to that fact is that no timer can ever exist twice in the "timers to be serviced" stack.

Question

What is the difference between the following triggers :

- Post-Fetch vs. Post_Query

- Post-Forms-Commit vs. Post-Database-Commit

- Pre-Query vs. Pre-Select

Answer

A comparison of these triggers follows :

Post-Fetch vs. Post-Query

POST-FETCH fires just after each attempt to fetch records from the database.  Depending on the value of "Array Size" for the block in question, and how many records are actually delivered from the database in response to our request, this trigger may fire fewer times.

In contrast, POST-QUERY fires once for *each* record that is brought from the waiting area (where records first go after they are fetched in a bunch from the database) and added to the end of the current block's list of records.

Post-Forms-Commit vs. Post-Database-Commit

POST-FORMS-COMMIT fires as the last trigger which is still part of the current transaction during commit-time processing.  It is the last chance for the application to perform any processing or to rollback the transaction before the actual 'COMMIT' is issued.

The POST-DATABASE-COMMIT triggers fires just after the 'COMMIT' statement is issued by forms to close the current transaction.  At this point it is too late to rollback the transaction.

Pre-Query vs. Pre-Select

PRE-QUERY fires just before Forms begins to prepare the SQL statement that will be required to query the appropriate records from the database in response to the query criteria that have been entered into the example record.

It is the designer’s last chance to "deposit" query criteria into the items in the block as if they had been entered into the example record by the operator.

PRE-SELECT fires after the PRE-QUERY trigger, and just before the actual, physical construction of the SELECT statement begins.  It would typically be used in conjunction with an ON-SELECT trigger in which the designer would be supplanting the normal construction of the SELECT statement with a user exit of his own to construct and prepare the SELECT statement for execution (perhaps against a foreign datasource).

Question

If I want to create a procedure should I use a library, a database stored procedure, or a local Form procedure?

Answer

These different forms of procedures will produce different performance results depending on what you are trying to achieve.  The database procedure will be invoked on the server side and will perform all of the processing there.  This may help reduce network traffic, but may overload the server if many clients are doing this.

Local form and library procedures are quite similar in that they are both stored and run on the client with any SQL statements being passed to the server.

The local procedures are typically faster on execution because they are actually part of the .FMX file, but may use more memory and have a longer startup time when the .FMX file is initially invoked.

Library procedures may be better in terms of overall memory as procedures are only loaded into memory in 4K chunks when they are required.  Once loaded, they are read from memory.  They have the additional advantage that the library can be attached to a number of forms at once.

If the code within the library procedures is altered, the form does not require re-generation.  

If a library contains package global variables, those variables can be shared across forms in a runform session.

Question

How does the use of libraries affect the size of the .FMX file?

Answer

If the library code were included in the .FRM, there would be no reason to redo them the way we have. The beauty of the new scheme is that the library modules remain separate and compiled (into .PLL or .PLX files) so that runform can bring program units into memory at runtime without adding to the size of each and every .FMX file.

Think of it like a DLL.  The only overhead that's added to the form that attaches a library is that negligible amount required to remember the name of the libraries on which it depends.

Question

How should I make a reference to a block in my library program units?

Answer

At compile time, Form Builder will attempt to resolve all references to objects.  Therefore, if you have code thus:

:BLOCK1.ITEM1 := 'Value';

or

IF

   :BLOCK1.ITEM1 = 'Y'

THEN

....

Form Builder will attempt to resolve the reference to :BLOCK1.ITEM1.  When you are writing library code, there is no way to resolve these references, since the library could potentially be attached to *any* form.

Instead you need to use the Copy() and Name_In() built-ins when referencing Form Builder objects within libraries.  These built-ins do not attempt to resolve references at compile time.  So the above code would become :

Copy ('Value','BLOCK1.ITEM1');

or

IF

   Name_In ('BLOCK1.ITEM1') = 'Y'

THEN

 ...

