

A Review Paper on

Decision Table-Based Testing

Cai Ferriday

345399

Tutors:

Dr. Roggenbach

Prof. Schlingloff

January 7
th

, 2007

Abstract

An investigation, and review on Decision Table-Based Testing.

Discussing the way in which it operates and generates test

cases. An insight into the Functional Testing Strategies that

surround it, and how they relate to each other.

A Review Paper on Decision Table-Based Testing

Cai Ferriday 345399 Software Testing

2

Table of Contents

Table of Contents .. 2

1 Introduction .. 3

2 Background .. 4

2.1 Origin .. 4

2.2 Definitions... 4

2.2.1 Decision Table-Based Testing? ... 4

2.2.2 Cause-Effect Graphing? .. 5

2.3 Functional Relationships.. 6

2.3.1 Effort .. 6

2.3.2 Efficiency ... 7

3 Applications .. 7

3.1 The Basics ... 7

3.2 Rule Counts ... 8

3.3 Redundancy & Inconsistency... 9

3.4 Creating a Decision Table.. 10

4 Summary & Future Work.. 12

A Review Paper on Decision Table-Based Testing

Cai Ferriday 345399 Software Testing

3

1 Introduction

From the beginning of software development testing has always been incorporated

into the final stages. Over the years the technicality of software has increased

dramatically. As this complexity increases, programmers realise that testing is just as

important as the development stages.

Nowadays there are two main types of stages, White box testing and Black box

testing. Grey box testing is another type, but it’s not so well known and is sometimes

used with Decision Table-Based Testing:

� White box – testing concerned with the internal structure of the program.

� Black box – testing concerned with input/output of the program.

� Grey box – using the logical relationships to analyse the input/output of

the program.

Testing has been modularised into different categories as it’s been practised and

researched since the 1970’s. This paper is going to discuss and analyse Decision

Table-Based Testing which is a Functional Testing method, also known as Black box

testing.

In this paper I aim to explore the fundamental concepts of Decision Table-Based

Testing and how it differs from other functional testing methods. Using examples I

will also explain how Decision Table-Based Testing operates and how to use it.

The remainder of this document is split up into 3 areas:-

� Background – An overview of DT-BT’s origin and its relationship with other

Functional Testing methods.

� Applications – A discussion on the ways DT-BT can be used, along with

examples and how it compares with different Functional Testing methods.

� Summary & Further Work – A brief outline of the material covered and

further work that will complement it.

A Review Paper on Decision Table-Based Testing

Cai Ferriday 345399 Software Testing

4

2 Background

2.1 Origin

Decision Table-Based Testing has been around since the early 1960’s; it is used to

depict complex logical relationships between input data. There are two closely related

methods of Functional Testing:

• The Cause-Effect Graphing (Elmendorf, 1973; Myers, 1979), and

• The Decision Tableau Method (Mosley, 1993).

These methods are a little different to Decision Table-Based Testing, but use similar

concepts of which I will explain later on. I won’t go into great detail as these methods

are awkward and unnecessary with the use of Decision Tables.

2.2 Definitions

2.2.1 Decision Table-Based Testing?

A Decision Table is the method used to build a complete set of test cases without

using the internal structure of the program in question. In order to create test cases we

use a table to contain the input and output values of a program. Such a table is split up

into four sections as shown below in fig 2.1.

Figure 2.1 The Basic Structure of a Decision Table.

In fig 2.1 there are two lines which divide the table into its main structure. The solid

vertical line separates the Stub and Entry portions of the table, and the solid horizontal

line is the boundary between the Conditions and Actions. So these lines separate the

table into four portions, Condition Stub, Action Stub, Condition Entries and Action

Entries.

A column in the entry portion of the table is known as a rule. Values which are in the

condition entry columns are known as inputs and values inside the action entry

portions are known as outputs. Outputs are calculated depending on the inputs and

specification of the program.

A Review Paper on Decision Table-Based Testing

Cai Ferriday 345399 Software Testing

5

In fig 2.2 there is an example of a typical Decision Table. The inputs in this given

table derive the outputs depending on what conditions these inputs meet. Notice the

use of “-“in the table below, these are known as don’t care entries. Don’t care entries

are normally viewed as being false values which don’t require the value to define the

output.

Figure 2.2 a Typical Structure of a Decision Table

Figure 2.2 shows its values from the inputs as true(T) or false(F) values which are

binary conditions, tables which use binary conditions are known as limited entry

decision tables. Tables which use multiple conditions are known as extended entry

decision tables. One important aspect to notice about decision tables is that they aren’t

imperative as that they don’t apply any particular order over the conditions or actions.

2.2.2 Cause-Effect Graphing?

Cause-Effect Graphing is very similar to Decision Table-Based Testing, where logical

relationships of the inputs produce outputs; this is shown in the form of a graph. The

graph used is similar to that of a Finite State Machine (FSM). Symbols are used to

show the relationships between input conditions, those symbols are similar to the

symbols used in propositional logic.

A Review Paper on Decision Table-Based Testing

Cai Ferriday 345399 Software Testing

6

2.3 Functional Relationships

There are 3 main functional methods:

� Boundary Value Analysis (BVA)

� Equivalence Class Testing (ECT)

� Decision Table-Based Testing (DT-BT)

All three functional testing methods compliment each other; the functional testing

outcome can not be completed to a satisfactory level using just one of these functional

testing strategies, or even two.

Decision Table-Based Testing has evolved from Equivalence Class Testing in some

way; Equivalence Class Testing groups together inputs of the same manner which

behave similarly. DT-BT follows on from ECT by grouping together the input and

output behaviours into an “equivalence” rule and testing the logical dependencies of

these rules. These rules are regarded as test cases, therefore redundant rules are

discarded.

2.3.1 Effort

Although all three testing strategies have similar properties and all work towards the

same goal, each of the methods is different in terms on application and effort.

Boundary Value Analysis is not concerned with the data or logical dependencies as

it’s a domain based testing technique. It requires low effort to develop test cases for

this method but on the other hand its sophistication is low and the number of test

cases generated is high compared with other functional methods.

Equivalence Class Testing is more concerned with data dependencies and treating

similar inputs and outputs the same by grouping them in classes. This reduces the test

cases and increases the effort used to create test cases due to the effort required to

group them. This is a more sophisticated method of test case development as it’s more

concerned with the values inside of the domain.

Decision Table-Based Testing on the other hand uses similar traits as Equivalence

Class Testing; it tests logical dependencies, which increases the effort in identifying

test cases, which increases the sophistication of these test cases. Because DT-BT

relies more on the logical dependencies of the equivalence classes in the decision

table this reduced the amount of rules required to complete the set of test cases.

Boundary Value Analysis: - A functional testing strategy which is concerned with the limits of an input/output domain.

Equivalence Class Testing: - A functional testing strategy where the inputs/outputs that behave similarly are grouped together

into equivalence partitions, in order to decrease test cases.

A Review Paper on Decision Table-Based Testing

Cai Ferriday 345399 Software Testing

7

 Number of Test Cases Effort to Identify Test Cases

 Boundary Value Analysis Decision Table

 Equivalence Class

 Equivalence Class

 Decision Table

 Boundary Value Analysis
 Sophistication

 Sophistication

Figure 2.3 Graphs showing the relationships of all functional methods

2.3.2 Efficiency

In order to give a sense of how efficient Decision Table-Based Testing is with respect

to other functional methods, Boundary Value Analysis and Equivalence Class Testing

have to be examined.

On average Boundary Value Analysis yields 5 times as many test cases as Decision

Table- Based Testing, and Equivalence Class Testing 1½ times as many test cases. On

this basis we can say that there exists either test case redundancy or impossible test

cases, either way this reduces the efficiency of these testing strategies and shows how

efficient Decision Table-Based Testing is.

But as stated above, we cannot totally disregard the other functional testing methods

as they complement each other and are not totally redundant in all testing cases.

3 Applications

In order to demonstrate and aid the understanding of Decision Tables I will show the

some of the many applications it has and aid them with examples. I am going to use

the Triangle Problem to explore decision tables in more depth.

3.1 The Basics

As explained above, there are two types of decision table, limited and extended entry

tables. Below, in fig 3.1 is an example of a limited entry decision table where the

inputs are depicted using binary values.

Fig 3.1 Decision Table for the Triangle Problem

A Review Paper on Decision Table-Based Testing

Cai Ferriday 345399 Software Testing

8

When creating a decision table there are many techniques people adopt to improve the

construction. Most testers add two main techniques, the use of the “impossible” action

stub and don’t care entries. The impossible action stub entry is used as a form of error

catching, if out of range values are inputted then the impossible action entry is

checked. Don’t care entries are also another useful procedure, they are used when no

other checks are required in the table, and therefore we don’t care what the rest of the

values are. Often, these don’t care entries are referred to as false values.

3.2 Rule Counts

Rule counts are used along with don’t care entries as a method to test for decision

table completeness; we can count the amount of test cases in a decision table using

rule counts and compare it with a calculated value. Below is a table which illustrates

rule counts in a decision table.

Fig 3.2 an example of Rule Counts in a Decision Table

The table above has a total rule count of 64; this can be calculated using the limited

entry formula as it’s a limited entry table.

 Number of Rules = 2
Number of Conditions

So therefore, Number of Rules = 2
6
 = 64

When calculating rule counts the don’t care values play a big part to the rule count of

that rule. Each “don’t care” entry in a rule doubles the rule count of that rule; so, each

rule has a rule count of 1 initially, if a “don’t care” entry exists then this rule count

doubles for every “don’t care” entry. So using both ways of computing the rule count

brings us to the same value which shows we have a complete decision table.

Where the Rule Count value of the decision table does not equal the number of rules

computed by the equation we know the decision table is not complete, and therefore

needs revision.

A Review Paper on Decision Table-Based Testing

Cai Ferriday 345399 Software Testing

9

3.3 Redundancy & Inconsistency

When using “don’t care” entries a level of care must be taken, using these entries can

cause redundancy and inconsistency within a decision table.

Using rule counts to check the completeness of the decision table can help to

eliminate redundant rules within the table. An example of a decision table with a

redundant rule can be seen in figure 3.3.

From the table you can see that there is some conflict between rules 1-4 and rule 9,

rules 1-4 use “don’t care” entries as an alternative to false, but rule 9 replaces those

“don’t care” entries with “false” entries. So when condition 1 is met rules 1-4 or 9

may be applied, luckily in this particular instance these rules have identical actions so

there is only a simple correction to be made to complete the following table.

Figure 3.3 an example of a Redundant Rule

If on the other hand the actions of the redundant rule differ from that of rules 1-4 then

we have a problem. A table showing this can be seen in figure 3.4.

Figure 3.4 an example of Inconsistent Rules

From the above decision table, if condition 1 was to be true and conditions 2 and 3

were false then rules 1-4 and 9 could be applied. This would result in a problem

because the actions of these rules are inconsistent so therefore the result is non-

deterministic and would cause the decision table to fail.

A Review Paper on Decision Table-Based Testing

Cai Ferriday 345399 Software Testing

10

3.4 Creating a Decision Table

When creating a decision table care must be taken when choosing your stub

conditions, and also the type of decision table you are creating. Limited Entry

decision tables are easier to create than extended entry tables. Here are some steps on

how to create a simple decision table using the Triangle Problem.

Step One – List All Stub Conditions

In this example we take three inputs, and from those inputs we perform conditional

checks to calculate if it’s a triangle, if so then what type of triangle it is. The first

condition we add must check whether all 3 sides constitute a triangle, as we don’t

want to perform other checks if the answer is false.

Then the remainder of the conditions will check whether the sides of the triangles are

equal or not. As there are only three sides to a triangle means that we have three

conditions when checking all of the sides.

So the condition stubs for the table would be:

� a, b, c form a triangle?

� a = b?

� a = c?

� a = c?

Step Two – Calculate the Number of Possible Combinations (Rules)

So in our table we have 4 condition stubs and we are developing a limited entry

decision table so we use the following formula:

 Number of Rules = 2
Number of Condition Stubs

So therefore, Number of Rules = 2
4
 = 16

So we have 16 possible combinations in our decision table.

Step Three – Place all of the Combinations into the Table

Figure 3.5 a Complete Decision Table

Here we have a complete decision table as there are three don’t care entries which

gives the first rule a rule count of 8 and the last 8 rules have a rule count of 1 each, so

the total rule count for the table is 16. Therefore we know that this table is complete.

A Review Paper on Decision Table-Based Testing

Cai Ferriday 345399 Software Testing

11

Step Four – Check Covered Combinations

This step is a precautionary step to check for errors and redundant and inconsistent

rules. We don’t want to go any further with the development of the decision table if

we have errors because this will complicate matters in the next step.

Step Five – Fill the Table with the Actions

For the final step of creating a decision table we must fill the Action Stub and Entry

sections of the table. The final decision table is shown in fig 3.6.

After completing the decision table and adding the actions we notice that each action

stub is exercised once, and we have also added the “impossible” action into the table

or catching rogue values.

Figure 3.6 the Final Decision Table

The above table can be explored and expanded by refining the first condition stub.

Instead of having “a, b, c form a triangle” we can expand this by using 3 conditions

rather than one, which will increase accuracy. This would also bring in a logical

dependency, because the actions of the first condition stub would affect the remaining

condition stubs. This is shown in figure 3.1.

A Review Paper on Decision Table-Based Testing

Cai Ferriday 345399 Software Testing

12

4 Summary & Future Work

Decision Table-Based Testing is an important part of Functional Testing; it explores

testing routes that other functional strategies avoid. One key aspect of decision table-

based testing is the use of logical dependencies; this enhances the tester’s ability to

solve inputs in a program which relies upon other inputs to perform its operation,

which is a strong characteristic in testing nowadays.

DT-BT is the most complete method of all of the functional testing strategies as it

encourages strict logical relationships between conditions. Creating these logical

dependencies can be tricky especially for difficult and extensive programs. It works

well with the Triangle problem as there are lots of decisions within the problem.

The difference between the functional testing strategies were outlined and shown in

this report, we saw the difference in effort, sophistication and number of test cases

these functional methods create. This illustrates that decision table-based testing is the

final step of the functional testing process. There are many testing tools available for

creating decision tables which are excellent for new users to become accustomed to

using this functional technique.

This report has outlined the importance of testing and time required when creating

software. I aim to make use of the knowledge I have gained while writing this report,

and apply to my final year dissertation. For my dissertation I am developing a system

which navigates to users to rendezvous with each other using musing as their cue.

This insight will aid me to create a reliable software package as I can use the input

values from devices which my software uses.

A Review Paper on Decision Table-Based Testing

Cai Ferriday 345399 Software Testing

13

References

[1] Jorgensen, Paul C., Software Testing: A Craftsman’s Approach, 2
nd

 Edition,

CRC Press. July 2002.

[2] Myers, Glenford J., The Art of Software Testing, 2
nd

 Edition, John Wiley &

Sons Canada, Ltd. June 2004.

[3] Mosley, Daniel J., The Handbook of MIS Application Software Testing,

Yourdon Press, Prentice Hall. 1993.

