Manual Testing

What are negative scenarios?
Testing to see whether the application is not doing what it is not suppose to do
What are positive scenarios?
Testing to see whether the application is doing what it is supposed to do.

In a web page, if two text boxes are there (one for Name Field another for Telephone no.), supported by "Save" & "Cancel" button. Then derive some test cases.
What more information you need?
Here is a sample list of questions that u can ask
Field Validation i.e alphanumeric for Name and Numeric for telephone Number
enable/disabled
focus
Boundary conditions (i.e. what is the max length for name and telephone no.)
field size
GUI standards for the controls
Some Test cases can be as follows: (it should be in a managed way)
Whether it is taking a valid name entry.
Whether it is taking a valid telephone no. entry.
Whether it is taking a long telephone no. etc.

What are Individual test case and Workflow test case? Why we do workflow scenarios
An individual test is one that is for a single features or requirement. However, it is important that related sequences of features be tested as well, as these correspond to units of work that user will typically perform. It will be important for the system tester to become familiar with what users intend to do with the product and how they intend to do it. Such testing can reveal errors that might not ordinarily be caught otherwise. For example while each operations in a series might produce the correct results it is possible that intermediate results get lost or corrupted between operations.

How do you determine what to test?
Depending upon the User Requirement document.

Have you ever written test cases or did you just execute those written by others?
Yes, I was involved in preparing and executing test cases in all the project.

What are the properties of a good requirement?
Understandable, Clear, Concise, Total Coverage of the application

What type of document do you need for QA, QC and testing?
Following is the list of documents required by QA and QC teams
Business requirements
SRS
Use cases
Test plan
Test cases

What is a good test case?
Accurate - tests what it’s designed to test
Economical - no unnecessary steps
Repeatable, reusable - keeps on going
Traceable - to a requirement
Appropriate - for test environment, testers
Self standing - independent of the writer
Self cleaning - picks up after itself

How to Write Better Test Cases
Test cases and software quality
Anatomy of a test case
Improving testability
Improving productivity
The seven most common mistakes
Case study

What's a 'test case'?
•A test case is a document that describes an input, action, or event and an expected response, to determine if a feature of an application is working correctly. A test case should contain particulars such as test case identifier, test case name, objective, test conditions/setup, input data requirements, steps, and expected results.
•Note that the process of developing test cases can help find problems in the requirements or design of an application, since it requires completely thinking through the operation of the application. For this reason, it's useful to prepare test cases early in the development cycle if possible.

How will you check that your test cases covered all the requirements?
By using traceabiltymatrix.
Traceability matrix means the matrix showing the relationship b/w the requirements & testcases.

For a triangle(sum of two sides is greater than or equal to the third side),what is the minimal number of test cases required.
The answer is 3
1. Measure all sides of the triangle.
2. Add the minnimum and second highest length of the triangle and store the result as Res.
3. Compare the Res with the largest side of the triangle.

Capability Maturity Model® (SW-CMM®) for Software
The Capability Maturity Model for Software describes the principles and practices underlying software process maturity and is intended to help software organizations improve the maturity of their software processes in terms of an evolutionary path from ad hoc, chaotic processes to mature, disciplined software processes. The CMM is organized into five maturity levels:

1) Initial: The software process is characterized as ad hoc, and occasionally even chaotic. Few processes are defined, and success depends on individual effort and heroics.

2) Repeatable: Basic project management processes are established to track cost, schedule, and functionality. The necessary process discipline is in place to repeat earlier successes on projects with similar applications.

3) Defined: The software process for both management and engineering activities is documented, standardized, and integrated into a standard software process for the organization. All projects use an approved, tailored version of the organization's standard software process for developing and maintaining software.

4) Managed: Detailed measures of the software process and product quality are collected. Both the software process and products are quantitatively understood and controlled.

5) Optimizing: Continuous process improvement is enabled by quantitative feedback from the process and from piloting innovative ideas and technologies.
Predictability, effectiveness, and control of an organization's software processes are believed to improve as the organization moves up these five levels. While not rigorous, the empirical evidence to date supports this belief.

Except for Level 1, each maturity level is decomposed into several key process areas that indicate the areas an organization should focus on to improve its software process.
The key process areas at Level 2 focus on the software project's concerns related to establishing basic project management controls. They are Requirements Management, Software Project Planning, Software Project Tracking and Oversight, Software Subcontract Management, Software Quality Assurance, and Software Configuration Management.

The key process areas at Level 3 address both project and organizational issues, as the organization establishes an infrastructure that institutionalizes effective software engineering and management processes across all projects. They are Organization Process Focus, Organization Process Definition, Training Program, Integrated Software Management, Software Product Engineering, Intergroup Coordination, and Peer Reviews.

The key process areas at Level 4 focus on establishing a quantitative understanding of both the software process and the software work products being built. They are Quantitative Process Management and Software Quality Management.

The key process areas at Level 5 cover the issues that both the organization and the projects must address to implement continual, measurable software process improvement. They are Defect Prevention, Technology Change Management, and Process Change Management.

Each key process area is described in terms of the key practices that contribute to satisfying its goals. The key practices describe the infrastructure and activities that contribute most to the effective implementation and institutionalization of the key process area.

Test Preparation Process
Baseline Documents
Construction of an application and testing are done using certain documents. These documents are written in sequence, each of it derived from the previous document.

Business Requirement
This document describes users needs for the application. This is done over a period of time, and going through various levels of requirements. This should also portrays functionality that are technically feasible within the stipulated times frames for delivery of the application.

As this contains user perspective requirements, User Acceptance Test is based on this document.

How to read a Business Requirement?
In case of the Integrated Test Process, this document is used to understand the user requirements and find the gaps between the User Requirement and Functional Specification.

User Acceptance Test team should break the business requirement document into modules depending on how the user will use the application. While reading the document, test team should put themselves as end users of the application. This document would serve as a base for UAT test preparation.

Functional Specification
This document describes the functional needs; design of the flow and user maintained parameters. These are primarily derived from Business Requirement document, which specifies the client’s business needs.

The proposed application should adhere to the specifications specified in this document. This is used henceforth to develop further documents for software construction and validation and verification of the software.

In order to achieve synchronisation between the software construction and testing process, Functional Specification (FS) serves as the Base document.

How to read a Functional Specification?
The testing process begins by first understanding the functional specifications. The FS is normally divided into modules. The tester should understand the entire functionality that is proposed in the document by reading it thoroughly.

It is natural for a tester at this point to get confused on the total flow and functionality. In order to overcome these, it is advisable for the tester to read the document multiple times, seeking clarifications then and there until clarity is achieved.

Testers are then given a module or multiple modules for validation and verification. These modules then become the tester’s responsibility.

The Tester should then begin to acquire an in-depth knowledge of their respective modules. In the process, these modules should be split into segments like field level validations, module rules, business rules etc. In order to do the same module’s importance and precisely the tester should interpret its role within the application.

A high level understanding of the data requirements for respective modules is also expected from the tester at this point.

Interaction with test lead at this juncture is crucial to draw a testing approach, like an end-to-end test coverage or individual test. (Explained later in the document)

Tester’s Reading Perspective
Functional specification, is sometimes written assuming some level of knowledge of the Testers and constructors. We can categorize the explanations by

Explicit Rules: Functionality expressed as conditions clearly in writing, in the document.

Implicit Rules: Functionality that is implied based on what is expressed as a specification/condition or requirement of a user.

The tester must also bear in mind, the test type i.e. Integrated System Testing (IST) or User Acceptance Testing (UAT). Based on this, he should orient his testing approach.

Design Specification: This document is prepared based on the functional specification. It contains the system architecture, table structures and program specifications. This is ideally prepared and used by the construction team. The Test Team should also have a detailed understanding of the design specification in order to understand the system architecture.

System Specification: This document is a combination of functional specification and design specification. This is used in case of small applications or an enhancement to an application. Under such situations it may not be advisable make two documents

What are 5 common solutions to software development problems?
•Solid requirements: clear, complete, detailed, cohesive, attainable, testable requirements that are agreed to by all players. Use prototypes to help nail down requirements.

•Realistic schedules: allow adequate time for planning, design, testing, bug fixing, re-testing, changes, and documentation; personnel should be able to complete the project without burning out.

•Adequate testing: start testing early on, re-test after fixes or changes, plan for adequate time for testing and bug-fixing.

•Stick to initial requirements as much as possible: be prepared to defend against changes and additions once development has begun, and be prepared to explain consequences. If changes are necessary, they should be adequately reflected in related schedule changes. If possible, use rapid prototyping during the design phase so that customers can see what to expect. This will provide them a higher comfort level with their requirements decisions and minimize changes later on.

•Communication: require walkthroughs and inspections when appropriate; make extensive use of group communication tools - e-mail, groupware, networked bug-tracking tools and change management tools, intranet capabilities, etc.; insure that documentation is available and up-to-date - preferably electronic, not paper; promote teamwork and cooperation; use protoypes early on so that customers' expectations are clarified.

What are 5 common problems in the software development process?
•Poor requirements: if requirements are unclear, incomplete, too general, or not testable, there will be problems.

•Unrealistic schedule: if too much work is crammed in too little time, problems are inevitable.

•Inadequate testing: no one will know whether or not the program is any good until the customer complains or systems crash.

•Featuritis: requests to pile on new features after development is underway; extremely common.

•Miscommunication: if developers don't know what's needed or customer's have erroneous expectations, problems are guaranteed.

TEST APPROACH : Testing can be done in two ways:
Bottom up approach
Top down approach

Bottom up approach: Testing can be performed starting from smallest and lowest level modules and proceeding one at a time. For each module in bottom up testing a short program executes the module and provides the needed data so that the module is asked to perform the way it will when embedded with in the larger system. When bottom level modules are tested attention turns to those on the next level that use the lower level ones they are tested individually and then linked with the previously examined lower level modules.

Top down approach:This type of testing starts from upper level modules. Since the detailed activities usually performed in the lower level routines are not provided stubs are written. A stub is a module shell called by upper level module and that when reached properly will return a message to the calling module indicating that proper interaction occurred. No attempt is made to verify the correctness of the lower level module.
Code Inspections:
An inspection team usually consists of four people. One of the four people plays the role of a moderator. The moderator is expected to be a competent programmer, but he/she is not the author of the program and need not be acquainted with the details of the program. The duties of the moderator include:

• Distributing materials for scheduling inspections
• Leading the session,
• Recording all errors found, and
• Ensuring that the errors are subsequently corrected.

Hence the moderator may be called as quality-control engineer. The remaining members usually consist of the program’s designer and a test specialist.

The general procedure is that the moderator distributes the program’s listing and design specification to the other participants well in advance of the inspection session. The participants are expected to familiarize themselves with the material prior to the session. During inspection session, two main activities occur:

1. The programmer is requested to narrate, statement by statement, the logic of the program. During the discourse, questions are raised and pursued to determine if errors exist. Experience has shown that many of the errors discovered are actually found by the programmer, rather than the other team members, during the narration. In other words, the simple act of reading aloud one’s program to an audience seems to be a remarkably effective error-detection technique.

2. The program is analyzed with respect to a checklist of historically common programming errors (such a checklist is discussed in the next section).

It is moderators responsibility to ensure the smooth conduction of the proceedings and that the participants focus their attention on finding errors, not correcting them.

After session, the programmer is given a list of the errors found. The list of errors is also analyzed, categorized, ad used to refine the error checklist to improve the effectiveness of future inspections.

The main benefits of this method are;
• Identifying early errors,

• The programmers usually receive feedback concerning his or her programming style and choice of algorithms and programming techniques.

• Other participants are also gain in similar way by being exposed to another programmer’s errors and programming style.

• The inspection process is a way of identifying early the most error-prone sections of the program, thus allowing one to focus more attention on these sections during the computer based testing processes.

Some Observations:
• Experience with these methods has found them to be effective e in finding from 30% to 70% of the logic design and coding errors in typical programs. They are not, however, effective in detecting “high-level” design errors, such as errors made in the requirements analysis process.

• Human processes find only the “easy” errors (those that would be trivial to find with computer-based testing) and the difficult, obscure, or tricky errors can only be found by computer-based testing.

• Inspections/walkthroughs and computer-based testing are complementary; error-detection efficiency will suffer if one or the other is not present.

• These processes are invaluable for testing modifications to programs. Because modifying an existing program is a more error-prone process(in terms of errors per statement written) than writing a new program.
What is the process involved in inspection and walkthroughs?
The process is performed by a group of people (three or four), only one of whom is the author of the program. Hence the program is essentially being tested by people other than the author, which is in consonance with the testing principle stating that an individual is usually ineffective in testing his or her own program. Inspection and walkthroughs are far more effective compare to desk checking (the process of a programmer reading his/her own program before testing it) because people other than the program’s author are involved in the process. These processes also appear to result in lower debugging (error correction) costs, since, when they find an error, the precise nature of the error is usually located. Also, they expose a batch or errors, thus allowing the errors to be corrected later enmasse. Computer based testing, on the other hand, normally exposes only a symptom of the error and errors are usually detected and corrected one by one.

Inspections and Walkthroughs:
Code inspections and walkthroughs are the two primary “human testing” methods. It involve the reading or visual inspection of a program by a team of people. Both methods involve some preparatory work by the participants. Normally it is done through meeting and it is typically known as “meeting of the minds”, a conference held by the participants. The objective of the meeting is to find errors, but not to find solutions to the errors (i.e. to test but not to debug).

The following are some of the steps to consider:
* Obtain requirements, functional design, and internal design specifications and other necessary documents.
* Obtain budget and schedule requirements. Determine project-related personnel and their responsibilities, reporting requirements, required standards and processes (such as release processes, change processes, etc.)
* Identify application's higher-risk aspects, set priorities, and determine scope and limitations of tests.
* Determine test approaches and methods - unit, integration, functional, system, load, usability tests, etc.
* Determine test environment requirements (hardware, software, communications, etc.)
* Determine testware requirements (record/playback tools, coverage analyzers, test tracking, problem/bug tracking, etc.)
* Determine test input data requirements
* Identify tasks, those responsible for tasks, and labor requirements
* Set schedule estimates, timelines, milestones
* Determine input equivalence classes, boundary value analyses, error classes
* Prepare test plan document and have needed reviews/approvals

* Write test cases
* Have needed reviews/inspections/approvals of test cases
* Prepare test environment and testware, obtain needed user manuals/reference documents/configuration guides/installation guides, set up test tracking processes, set up logging and archiving processes, set up or obtain test input data
* Obtain and install software releases
* Perform tests
* Evaluate and report results
* Track problems/bugs and fixes
* Retest as needed
* Maintain and update test plans, test cases, test environment, and testware through life cycle

