
1 SQL – Structured Query Language

1.1 Tables

In relational database systems (DBS) data are represented using tables (relations). A query
issued against the DBS also results in a table. A table has the following structure:

Column 1 Column 2 . . . Column n

←− Tuple (or Record)

.

A table is uniquely identified by its name and consists of rows that contain the stored informa-
tion, each row containing exactly one tuple (or record). A table can have one or more columns.
A column is made up of a column name and a data type, and it describes an attribute of the
tuples. The structure of a table, also called relation schema, thus is defined by its attributes.
The type of information to be stored in a table is defined by the data types of the attributes
at table creation time.

SQL uses the terms table, row, and column for relation, tuple, and attribute, respectively. In
this tutorial we will use the terms interchangeably.

A table can have up to 254 columns which may have different or same data types and sets of
values (domains), respectively. Possible domains are alphanumeric data (strings), numbers and
date formats. Oracle offers the following basic data types:

• char(n): Fixed-length character data (string), n characters long. The maximum size for
n is 255 bytes (2000 in Oracle8). Note that a string of type char is always padded on
right with blanks to full length of n. (☞ can be memory consuming).
Example: char(40)

• varchar2(n): Variable-length character string. The maximum size for n is 2000 (4000 in
Oracle8). Only the bytes used for a string require storage. Example: varchar2(80)

• number(o, d): Numeric data type for integers and reals. o = overall number of digits, d
= number of digits to the right of the decimal point.
Maximum values: o =38, d= −84 to +127. Examples: number(8), number(5,2)
Note that, e.g., number(5,2) cannot contain anything larger than 999.99 without result-
ing in an error. Data types derived from number are int[eger], dec[imal], smallint
and real.

• date: Date data type for storing date and time.
The default format for a date is: DD-MMM-YY. Examples: ’13-OCT-94’, ’07-JAN-98’

1

• long: Character data up to a length of 2GB. Only one long column is allowed per table.

Note: In Oracle-SQL there is no data type boolean. It can, however, be simulated by using
either char(1) or number(1).

As long as no constraint restricts the possible values of an attribute, it may have the special
value null (for unknown). This value is different from the number 0, and it is also different
from the empty string ’’.

Further properties of tables are:

• the order in which tuples appear in a table is not relevant (unless a query requires an
explicit sorting).

• a table has no duplicate tuples (depending on the query, however, duplicate tuples can
appear in the query result).

A database schema is a set of relation schemas. The extension of a database schema at database
run-time is called a database instance or database, for short.

1.1.1 Example Database

In the following discussions and examples we use an example database to manage information
about employees, departments and salary scales. The corresponding tables can be created
under the UNIX shell using the command demobld. The tables can be dropped by issuing
the command demodrop under the UNIX shell.

The table EMP is used to store information about employees:

EMPNO ENAME JOB MGR HIREDATE SAL DEPTNO

7369 SMITH CLERK 7902 17-DEC-80 800 20

7499 ALLEN SALESMAN 7698 20-FEB-81 1600 30

7521 WARD SALESMAN 7698 22-FEB-81 1250 30

...

7698 BLAKE MANAGER 01-MAY-81 3850 30

7902 FORD ANALYST 7566 03-DEC-81 3000 10

For the attributes, the following data types are defined:

EMPNO:number(4), ENAME:varchar2(30), JOB:char(10), MGR:number(4),
HIREDATE:date, SAL:number(7,2), DEPTNO:number(2)

Each row (tuple) from the table is interpreted as follows: an employee has a number, a name,
a job title and a salary. Furthermore, for each employee the number of his/her manager, the
date he/she was hired, and the number of the department where he/she is working are stored.

2

The table DEPT stores information about departments (number, name, and location):

DEPTNO DNAME LOC

10 STORE CHICAGO

20 RESEARCH DALLAS

30 SALES NEW YORK

40 MARKETING BOSTON

Finally, the table SALGRADE contains all information about the salary scales, more precisely, the
maximum and minimum salary of each scale.

GRADE LOSAL HISAL

1 700 1200

2 1201 1400

3 1401 2000

4 2001 3000

5 3001 9999

1.2 Queries (Part I)

In order to retrieve the information stored in the database, the SQL query language is used. In
the following we restrict our attention to simple SQL queries and defer the discussion of more
complex queries to Section 1.5

In SQL a query has the following (simplified) form (components in brackets [] are optional):

select [distinct] <column(s)>
from <table>
[where <condition>]
[order by <column(s) [asc|desc]>]

1.2.1 Selecting Columns

The columns to be selected from a table are specified after the keyword select. This operation
is also called projection. For example, the query

select LOC, DEPTNO from DEPT;

lists only the number and the location for each tuple from the relation DEPT. If all columns
should be selected, the asterisk symbol “∗” can be used to denote all attributes. The query

select ∗ from EMP;

retrieves all tuples with all columns from the table EMP. Instead of an attribute name, the select
clause may also contain arithmetic expressions involving arithmetic operators etc.

select ENAME, DEPTNO, SAL ∗ 1.55 from EMP;

3

For the different data types supported in Oracle, several operators and functions are provided:

• for numbers: abs, cos, sin, exp, log, power, mod, sqrt, +,−, ∗, /, . . .

• for strings: chr, concat(string1, string2), lower, upper, replace(string, search string,
replacement string), translate, substr(string, m, n), length, to date, . . .

• for the date data type: add month, month between, next day, to char, . . .

The usage of these operations is described in detail in the SQL*Plus help system (see also
Section 2).

Consider the query

select DEPTNO from EMP;

which retrieves the department number for each tuple. Typically, some numbers will appear
more than only once in the query result, that is, duplicate result tuples are not automatically
eliminated. Inserting the keyword distinct after the keyword select, however, forces the
elimination of duplicates from the query result.

It is also possible to specify a sorting order in which the result tuples of a query are displayed.
For this the order by clause is used and which has one or more attributes listed in the select
clause as parameter. desc specifies a descending order and asc specifies an ascending order
(this is also the default order). For example, the query

select ENAME, DEPTNO, HIREDATE from EMP;
from EMP

order by DEPTNO [asc], HIREDATE desc;

displays the result in an ascending order by the attribute DEPTNO. If two tuples have the same
attribute value for DEPTNO, the sorting criteria is a descending order by the attribute values of
HIREDATE. For the above query, we would get the following output:

ENAME DEPTNO HIREDATE

FORD 10 03-DEC-81

SMITH 20 17-DEC-80

BLAKE 30 01-MAY-81

WARD 30 22-FEB-81

ALLEN 30 20-FEB-81

...........................

1.2.2 Selection of Tuples

Up to now we have only focused on selecting (some) attributes of all tuples from a table. If one is
interested in tuples that satisfy certain conditions, the where clause is used. In a where clause
simple conditions based on comparison operators can be combined using the logical connectives
and, or, and not to form complex conditions. Conditions may also include pattern matching
operations and even subqueries (Section 1.5).

4

Example: List the job title and the salary of those employees whose manager has the
number 7698 or 7566 and who earn more than 1500:

select JOB, SAL

from EMP

where (MGR = 7698 or MGR = 7566) and SAL > 1500;

For all data types, the comparison operators =, != or <>,<, >,<=, => are allowed in the
conditions of a where clause.

Further comparison operators are:

• Set Conditions: <column> [not] in (<list of values>)

Example: select ∗ from DEPT where DEPTNO in (20,30);

• Null value: <column> is [not] null,
i.e., for a tuple to be selected there must (not) exist a defined value for this column.

Example: select ∗ from EMP where MGR is not null;

Note: the operations = null and ! = null are not defined!

• Domain conditions: <column> [not] between <lower bound> and <upper bound>

Example: • select EMPNO, ENAME, SAL from EMP

where SAL between 1500 and 2500;

• select ENAME from EMP

where HIREDATE between ’02-APR-81’ and ’08-SEP-81’;

1.2.3 String Operations

In order to compare an attribute with a string, it is required to surround the string by apos-
trophes, e.g., where LOCATION = ’DALLAS’. A powerful operator for pattern matching is the
like operator. Together with this operator, two special characters are used: the percent sign
% (also called wild card), and the underline , also called position marker. For example, if
one is interested in all tuples of the table DEPT that contain two C in the name of the depart-
ment, the condition would be where DNAME like ’%C%C%’. The percent sign means that any
(sub)string is allowed there, even the empty string. In contrast, the underline stands for exactly
one character. Thus the condition where DNAME like ’%C C%’ would require that exactly one
character appears between the two Cs. To test for inequality, the not clause is used.

Further string operations are:

• upper(<string>) takes a string and converts any letters in it to uppercase, e.g., DNAME
= upper(DNAME) (The name of a department must consist only of upper case letters.)
• lower(<string>) converts any letter to lowercase,
• initcap(<string>) converts the initial letter of every word in <string> to uppercase.
• length(<string>) returns the length of the string.
• substr(<string>, n [, m]) clips out a m character piece of <string>, starting at position

n. If m is not specified, the end of the string is assumed.
substr(’DATABASE SYSTEMS’, 10, 7) returns the string ’SYSTEMS’.

5

1.2.4 Aggregate Functions

Aggregate functions are statistical functions such as count, min, max etc. They are used to
compute a single value from a set of attribute values of a column:

count Counting Rows
Example: How many tuples are stored in the relation EMP?

select count(∗) from EMP;

Example: How many different job titles are stored in the relation EMP?
select count(distinct JOB) from EMP;

max Maximum value for a column
min Minimum value for a column

Example: List the minimum and maximum salary.
select min(SAL), max(SAL) from EMP;

Example: Compute the difference between the minimum and maximum salary.
select max(SAL) - min(SAL) from EMP;

sum Computes the sum of values (only applicable to the data type number)
Example: Sum of all salaries of employees working in the department 30.

select sum(SAL) from EMP

where DEPTNO = 30;

avg Computes average value for a column (only applicable to the data type number)

Note: avg, min and max ignore tuples that have a null value for the specified
attribute, but count considers null values.

1.3 Data Definition in SQL

1.3.1 Creating Tables

The SQL command for creating an empty table has the following form:

create table <table> (
<column 1> <data type> [not null] [unique] [<column constraint>],
.
<column n> <data type> [not null] [unique] [<column constraint>],
[<table constraint(s)>]
);

For each column, a name and a data type must be specified and the column name must be
unique within the table definition. Column definitions are separated by colons. There is no
difference between names in lower case letters and names in upper case letters. In fact, the
only place where upper and lower case letters matter are strings comparisons. A not null

6

constraint is directly specified after the data type of the column and the constraint requires
defined attribute values for that column, different from null.

The keyword unique specifies that no two tuples can have the same attribute value for this
column. Unless the condition not null is also specified for this column, the attribute value
null is allowed and two tuples having the attribute value null for this column do not violate
the constraint.

Example: The create table statement for our EMP table has the form

create table EMP (
EMPNO number(4) not null,
ENAME varchar2(30) not null,
JOB varchar2(10),
MGR number(4),
HIREDATE date,
SAL number(7,2),
DEPTNO number(2)
);

Remark: Except for the columns EMPNO and ENAME null values are allowed.

1.3.2 Constraints

The definition of a table may include the specification of integrity constraints. Basically two
types of constraints are provided: column constraints are associated with a single column
whereas table constraints are typically associated with more than one column. However, any
column constraint can also be formulated as a table constraint. In this section we consider only
very simple constraints. More complex constraints will be discussed in Section 5.1.

The specification of a (simple) constraint has the following form:

[constraint <name>] primary key | unique | not null

A constraint can be named. It is advisable to name a constraint in order to get more meaningful
information when this constraint is violated due to, e.g., an insertion of a tuple that violates
the constraint. If no name is specified for the constraint, Oracle automatically generates a
name of the pattern SYS C<number>.

The two most simple types of constraints have already been discussed: not null and unique.
Probably the most important type of integrity constraints in a database are primary key con-
straints. A primary key constraint enables a unique identification of each tuple in a table.
Based on a primary key, the database system ensures that no duplicates appear in a table. For
example, for our EMP table, the specification

create table EMP (
EMPNO number(4) constraint pk emp primary key,
. . .);

7

defines the attribute EMPNO as the primary key for the table. Each value for the attribute EMPNO
thus must appear only once in the table EMP. A table, of course, may only have one primary
key. Note that in contrast to a unique constraint, null values are not allowed.

Example:

We want to create a table called PROJECT to store information about projects. For each
project, we want to store the number and the name of the project, the employee number of
the project’s manager, the budget and the number of persons working on the project, and
the start date and end date of the project. Furthermore, we have the following conditions:

- a project is identified by its project number,

- the name of a project must be unique,

- the manager and the budget must be defined.

Table definition:
create table PROJECT (

PNO number(3) constraint prj pk primary key,
PNAME varchar2(60) unique,
PMGR number(4) not null,
PERSONS number(5),
BUDGET number(8,2) not null,
PSTART date,
PEND date);

A unique constraint can include more than one attribute. In this case the pattern unique(<column
i>, . . . , <column j>) is used. If it is required, for example, that no two projects have the same
start and end date, we have to add the table constraint

constraint no same dates unique(PEND, PSTART)

This constraint has to be defined in the create table command after both columns PEND and
PSTART have been defined. A primary key constraint that includes more than only one column
can be specified in an analogous way.

Instead of a not null constraint it is sometimes useful to specify a default value for an attribute
if no value is given, e.g., when a tuple is inserted. For this, we use the default clause.

Example:

If no start date is given when inserting a tuple into the table PROJECT, the project start
date should be set to January 1st, 1995:

PSTART date default(’01-JAN-95’)

Note: Unlike integrity constraints, it is not possible to specify a name for a default.

8

1.3.3 Checklist for Creating Tables

The following provides a small checklist for the issues that need to be considered before creating
a table.

• What are the attributes of the tuples to be stored? What are the data types of the
attributes? Should varchar2 be used instead of char ?
• Which columns build the primary key?
• Which columns do (not) allow null values? Which columns do (not) allow duplicates ?
• Are there default values for certain columns that allow null values ?

1.4 Data Modifications in SQL

After a table has been created using the create table command, tuples can be inserted into
the table, or tuples can be deleted or modified.

1.4.1 Insertions

The most simple way to insert a tuple into a table is to use the insert statement

insert into <table> [(<column i, . . . , column j>)]
values (<value i, . . . , value j>);

For each of the listed columns, a corresponding (matching) value must be specified. Thus an
insertion does not necessarily have to follow the order of the attributes as specified in the create
table statement. If a column is omitted, the value null is inserted instead. If no column list
is given, however, for each column as defined in the create table statement a value must be
given.

Examples:

insert into PROJECT(PNO, PNAME, PERSONS, BUDGET, PSTART)

values(313, ’DBS’, 4, 150000.42, ’10-OCT-94’);

or

insert into PROJECT

values(313, ’DBS’, 7411, null, 150000.42, ’10-OCT-94’, null);

If there are already some data in other tables, these data can be used for insertions into a new
table. For this, we write a query whose result is a set of tuples to be inserted. Such an insert
statement has the form

insert into <table> [(<column i, . . . , column j>)] <query>

Example: Suppose we have defined the following table:

9

create table OLDEMP (
ENO number(4) not null,
HDATE date);

We now can use the table EMP to insert tuples into this new relation:

insert into OLDEMP (ENO, HDATE)

select EMPNO, HIREDATE from EMP

where HIREDATE < ’31-DEC-60’;

1.4.2 Updates

For modifying attribute values of (some) tuples in a table, we use the update statement:

update <table> set
<column i> = <expression i>, . . . , <column j> = <expression j>
[where <condition>];

An expression consists of either a constant (new value), an arithmetic or string operation, or
an SQL query. Note that the new value to assign to <column i> must a the matching data
type.

An update statement without a where clause results in changing respective attributes of all
tuples in the specified table. Typically, however, only a (small) portion of the table requires an
update.

Examples:

• The employee JONES is transfered to the department 20 as a manager and his salary is
increased by 1000:

update EMP set
JOB = ’MANAGER’, DEPTNO = 20, SAL = SAL +1000
where ENAME = ’JONES’;

• All employees working in the departments 10 and 30 get a 15% salary increase.

update EMP set
SAL = SAL ∗ 1.15 where DEPTNO in (10,30);

Analogous to the insert statement, other tables can be used to retrieve data that are used as
new values. In such a case we have a <query> instead of an <expression>.

Example: All salesmen working in the department 20 get the same salary as the manager
who has the lowest salary among all managers.

update EMP set
SAL = (select min(SAL) from EMP

where JOB = ’MANAGER’)
where JOB = ’SALESMAN’ and DEPTNO = 20;

Explanation: The query retrieves the minimum salary of all managers. This value then is
assigned to all salesmen working in department 20.

10

It is also possible to specify a query that retrieves more than only one value (but still only one
tuple!). In this case the set clause has the form set(<column i, . . . , column j>) = <query>.
It is important that the order of data types and values of the selected row exactly correspond
to the list of columns in the set clause.

1.4.3 Deletions

All or selected tuples can be deleted from a table using the delete command:

delete from <table> [where <condition>];

If the where clause is omitted, all tuples are deleted from the table. An alternative command
for deleting all tuples from a table is the truncate table <table> command. However, in this
case, the deletions cannot be undone (see subsequent Section 1.4.4).

Example:

Delete all projects (tuples) that have been finished before the actual date (system date):

delete from PROJECT where PEND < sysdate;

sysdate is a function in SQL that returns the system date. Another important SQL function
is user, which returns the name of the user logged into the current Oracle session.

1.4.4 Commit and Rollback

A sequence of database modifications, i.e., a sequence of insert, update, and delete state-
ments, is called a transaction. Modifications of tuples are temporarily stored in the database
system. They become permanent only after the statement commit; has been issued.

As long as the user has not issued the commit statement, it is possible to undo all modifications
since the last commit. To undo modifications, one has to issue the statement rollback;.

It is advisable to complete each modification of the database with a commit (as long as the
modification has the expected effect). Note that any data definition command such as create
table results in an internal commit. A commit is also implicitly executed when the user
terminates an Oracle session.

1.5 Queries (Part II)

In Section 1.2 we have only focused on queries that refer to exactly one table. Furthermore,
conditions in a where were restricted to simple comparisons. A major feature of relational
databases, however, is to combine (join) tuples stored in different tables in order to display
more meaningful and complete information. In SQL the select statement is used for this kind
of queries joining relations:

11

select [distinct] [<alias ak>.]<column i>, . . . , [<alias al>.]<column j>
from <table 1> [<alias a1>], . . . , <table n> [<alias an>]
[where <condition>]

The specification of table aliases in the from clause is necessary to refer to columns that have
the same name in different tables. For example, the column DEPTNO occurs in both EMP and
DEPT. If we want to refer to either of these columns in the where or select clause, a table
alias has to be specified and put in the front of the column name. Instead of a table alias also
the complete relation name can be put in front of the column such as DEPT.DEPTNO, but this
sometimes can lead to rather lengthy query formulations.

1.5.1 Joining Relations

Comparisons in the where clause are used to combine rows from the tables listed in the from
clause.

Example: In the table EMP only the numbers of the departments are stored, not their
name. For each salesman, we now want to retrieve the name as well as the
number and the name of the department where he is working:

select ENAME, E.DEPTNO, DNAME

from EMP E, DEPT D

where E.DEPTNO = D.DEPTNO

and JOB = ’SALESMAN’;

Explanation: E and D are table aliases for EMP and DEPT, respectively. The computation of the
query result occurs in the following manner (without optimization):

1. Each row from the table EMP is combined with each row from the table DEPT (this oper-
ation is called Cartesian product). If EMP contains m rows and DEPT contains n rows, we
thus get n ∗m rows.

2. From these rows those that have the same department number are selected (where
E.DEPTNO = D.DEPTNO).

3. From this result finally all rows are selected for which the condition JOB = ’SALESMAN’
holds.

In this example the joining condition for the two tables is based on the equality operator “=”.
The columns compared by this operator are called join columns and the join operation is called
an equijoin.

Any number of tables can be combined in a select statement.

Example: For each project, retrieve its name, the name of its manager, and the name of
the department where the manager is working:

select ENAME, DNAME, PNAME

from EMP E, DEPT D, PROJECT P

where E.EMPNO = P.MGR

and D.DEPTNO = E.DEPTNO;

12

It is even possible to join a table with itself:

Example: List the names of all employees together with the name of their manager:

select E1.ENAME, E2.ENAME

from EMP E1, EMP E2

where E1.MGR = E2.EMPNO;

Explanation: The join columns are MGR for the table E1 and EMPNO for the table E2.
The equijoin comparison is E1.MGR = E2.EMPNO.

1.5.2 Subqueries

Up to now we have only concentrated on simple comparison conditions in a where clause, i.e.,
we have compared a column with a constant or we have compared two columns. As we have
already seen for the insert statement, queries can be used for assignments to columns. A query
result can also be used in a condition of a where clause. In such a case the query is called a
subquery and the complete select statement is called a nested query.

A respective condition in the where clause then can have one of the following forms:

1. Set-valued subqueries
<expression> [not] in (<subquery>)
<expression> <comparison operator> [any|all] (<subquery>)
An <expression> can either be a column or a computed value.

2. Test for (non)existence
[not] exists (<subquery>)

In a where clause conditions using subqueries can be combined arbitrarily by using the logical
connectives and and or.

Example: List the name and salary of employees of the department 20 who are leading
a project that started before December 31, 1990:

select ENAME, SAL from EMP

where EMPNO in
(select PMGR from PROJECT

where PSTART < ’31-DEC-90’)
and DEPTNO =20;

Explanation: The subquery retrieves the set of those employees who manage a project that
started before December 31, 1990. If the employee working in department 20 is contained in
this set (in operator), this tuple belongs to the query result set.

Example: List all employees who are working in a department located in BOSTON:

13

select ∗ from EMP
where DEPTNO in

(select DEPTNO from DEPT

where LOC = ’BOSTON’);

The subquery retrieves only one value (the number of the department located in Boston). Thus
it is possible to use “=” instead of in. As long as the result of a subquery is not known in
advance, i.e., whether it is a single value or a set, it is advisable to use the in operator.

A subquery may use again a subquery in its where clause. Thus conditions can be nested
arbitrarily. An important class of subqueries are those that refer to its surrounding (sub)query
and the tables listed in the from clause, respectively. Such type of queries is called correlated
subqueries.

Example: List all those employees who are working in the same department as their manager
(note that components in [] are optional:

select ∗ from EMP E1

where DEPTNO in
(select DEPTNO from EMP [E]

where [E.]EMPNO = E1.MGR);

Explanation: The subquery in this example is related to its surrounding query since it refers to
the column E1.MGR. A tuple is selected from the table EMP (E1) for the query result if the value
for the column DEPTNO occurs in the set of values select in the subquery. One can think of the
evaluation of this query as follows: For each tuple in the table E1, the subquery is evaluated
individually. If the condition where DEPTNO in . . . evaluates to true, this tuple is selected.
Note that an alias for the table EMP in the subquery is not necessary since columns without a
preceding alias listed there always refer to the innermost query and tables.

Conditions of the form <expression> <comparison operator> [any|all] <subquery> are used
to compare a given <expression> with each value selected by <subquery>.

• For the clause any, the condition evaluates to true if there exists at least on row selected
by the subquery for which the comparison holds. If the subquery yields an empty result
set, the condition is not satisfied.
• For the clause all, in contrast, the condition evaluates to true if for all rows selected by

the subquery the comparison holds. In this case the condition evaluates to true if the
subquery does not yield any row or value.

Example: Retrieve all employees who are working in department 10 and who earn at
least as much as any (i.e., at least one) employee working in department 30:

select ∗ from EMP

where SAL >= any
(select SAL from EMP

where DEPTNO = 30)
and DEPTNO = 10;

14

Note: Also in this subquery no aliases are necessary since the columns refer to the innermost
from clause.

Example: List all employees who are not working in department 30 and who earn more than
all employees working in department 30:

select ∗ from EMP

where SAL > all
(select SAL from EMP

where DEPTNO = 30)
and DEPTNO <> 30;

For all and any, the following equivalences hold:

in ⇔ = any
not in ⇔ <> all or != all

Often a query result depends on whether certain rows do (not) exist in (other) tables. Such
type of queries is formulated using the exists operator.

Example: List all departments that have no employees:

select ∗ from DEPT

where not exists
(select ∗ from EMP

where DEPTNO = DEPT.DEPTNO);

Explanation: For each tuple from the table DEPT, the condition is checked whether there exists
a tuple in the table EMP that has the same department number (DEPT.DEPTNO). In case no such
tuple exists, the condition is satisfied for the tuple under consideration and it is selected. If
there exists a corresponding tuple in the table EMP, the tuple is not selected.

1.5.3 Operations on Result Sets

Sometimes it is useful to combine query results from two or more queries into a single result.
SQL supports three set operators which have the pattern:

<query 1> <set operator> <query 2>

The set operators are:

• union [all] returns a table consisting of all rows either appearing in the result of <query
1> or in the result of <query 2>. Duplicates are automatically eliminated unless the
clause all is used.

• intersect returns all rows that appear in both results <query 1> and <query 2>.

• minus returns those rows that appear in the result of <query 1> but not in the result of
<query 2>.

15

Example: Assume that we have a table EMP2 that has the same structure and columns
as the table EMP:

• All employee numbers and names from both tables:
select EMPNO, ENAME from EMP

union
select EMPNO, ENAME from EMP2;

• Employees who are listed in both EMP and EMP2:
select ∗ from EMP

intersect
select ∗ from EMP2;

• Employees who are only listed in EMP:
select ∗ from EMP

minus
select ∗ from EMP2;

Each operator requires that both tables have the same data types for the columns to which the
operator is applied.

1.5.4 Grouping

In Section 1.2.4 we have seen how aggregate functions can be used to compute a single value
for a column. Often applications require grouping rows that have certain properties and then
applying an aggregate function on one column for each group separately. For this, SQL pro-
vides the clause group by <group column(s)>. This clause appears after the where clause
and must refer to columns of tables listed in the from clause.

select <column(s)>
from <table(s)>
where <condition>
group by <group column(s)>
[having <group condition(s)>];

Those rows retrieved by the selected clause that have the same value(s) for <group column(s)>
are grouped. Aggregations specified in the select clause are then applied to each group sepa-
rately. It is important that only those columns that appear in the <group column(s)> clause
can be listed without an aggregate function in the select clause !

Example: For each department, we want to retrieve the minimum and maximum salary.

select DEPTNO, min(SAL), max(SAL)
from EMP

group by DEPTNO;

Rows from the table EMP are grouped such that all rows in a group have the same department
number. The aggregate functions are then applied to each such group. We thus get the following
query result:

16

DEPTNO MIN(SAL) MAX(SAL)

10 1300 5000
20 800 3000
30 950 2850

Rows to form a group can be restricted in the where clause. For example, if we add the
condition where JOB = ’CLERK’, only respective rows build a group. The query then would
retrieve the minimum and maximum salary of all clerks for each department. Note that is not
allowed to specify any other column than DEPTNO without an aggregate function in the select
clause since this is the only column listed in the group by clause (is it also easy to see that
other columns would not make any sense).

Once groups have been formed, certain groups can be eliminated based on their properties,
e.g., if a group contains less than three rows. This type of condition is specified using the
having clause. As for the select clause also in a having clause only <group column(s)> and
aggregations can be used.

Example: Retrieve the minimum and maximum salary of clerks for each department having
more than three clerks.

select DEPTNO, min(SAL), max(SAL)
from EMP

where JOB = ’CLERK’
group by DEPTNO

having count(∗) > 3;

Note that it is even possible to specify a subquery in a having clause. In the above query, for
example, instead of the constant 3, a subquery can be specified.

A query containing a group by clause is processed in the following way:

1. Select all rows that satisfy the condition specified in the where clause.

2. From these rows form groups according to the group by clause.

3. Discard all groups that do not satisfy the condition in the having clause.

4. Apply aggregate functions to each group.

5. Retrieve values for the columns and aggregations listed in the select clause.

1.5.5 Some Comments on Tables

Accessing tables of other users

Provided that a user has the privilege to access tables of other users (see also Section 3), she/he
can refer to these tables in her/his queries. Let <user> be a user in the Oracle system and
<table> a table of this user. This table can be accessed by other (privileged) users using the
command

select ∗ from <user>.<table>;

17

In case that one often refers to tables of other users, it is useful to use a synonym instead of
<user>.<table>. In Oracle-SQL a synonym can be created using the command

create synonym <name> for <user>.<table> ;

It is then possible to use simply <name> in a from clause. Synonyms can also be created for
one’s own tables.

Adding Comments to Definitions

For applications that include numerous tables, it is useful to add comments on table definitions
or to add comments on columns. A comment on a table can be created using the command

comment on table <table> is ’<text>’;

A comment on a column can be created using the command

comment on column <table>.<column> is ’<text>’;

Comments on tables and columns are stored in the data dictionary. They can be accessed using
the data dictionary views USER TAB COMMENTS and USER COL COMMENTS (see also Section 3).

Modifying Table- and Column Definitions

It is possible to modify the structure of a table (the relation schema) even if rows have already
been inserted into this table. A column can be added using the alter table command

alter table <table>
add(<column> <data type> [default <value>] [<column constraint>]);

If more than only one column should be added at one time, respective add clauses need to be
separated by colons. A table constraint can be added to a table using

alter table <table> add (<table constraint>);

Note that a column constraint is a table constraint, too. not null and primary key constraints
can only be added to a table if none of the specified columns contains a null value. Table
definitions can be modified in an analogous way. This is useful, e.g., when the size of strings
that can be stored needs to be increased. The syntax of the command for modifying a column
is

alter table <table>
modify(<column> [<data type>] [default <value>] [<column constraint>]);

Note: In earlier versions of Oracle it is not possible to delete single columns from a table
definition. A workaround is to create a temporary table and to copy respective columns and
rows into this new table. Furthermore, it is not possible to rename tables or columns. In the
most recent version (9i), using the alter table command, it is possible to rename a table,
columns, and constraints. In this version, there also exists a drop column clause as part of
the alter table statement.

Deleting a Table

A table and its rows can be deleted by issuing the command drop table <table> [cascade
constraints];.

18

1.6 Views

In Oracle the SQL command to create a view (virtual table) has the form

create [or replace] view <view-name> [(<column(s)>)] as
<select-statement> [with check option [constraint <name>]];

The optional clause or replace re-creates the view if it already exists. <column(s)> names
the columns of the view. If <column(s)> is not specified in the view definition, the columns of
the view get the same names as the attributes listed in the select statement (if possible).

Example: The following view contains the name, job title and the annual salary of em-
ployees working in the department 20:

create view DEPT20 as
select ENAME, JOB, SAL∗12 ANNUAL SALARY from EMP

where DEPTNO = 20;

In the select statement the column alias ANNUAL SALARY is specified for the expression SAL∗12
and this alias is taken by the view. An alternative formulation of the above view definition is

create view DEPT20 (ENAME, JOB, ANNUAL SALARY) as
select ENAME, JOB, SAL ∗ 12 from EMP

where DEPTNO = 20;

A view can be used in the same way as a table, that is, rows can be retrieved from a view
(also respective rows are not physically stored, but derived on basis of the select statement in
the view definition), or rows can even be modified. A view is evaluated again each time it is
accessed. In Oracle SQL no insert, update, or delete modifications on views are allowed
that use one of the following constructs in the view definition:

• Joins
• Aggregate function such as sum, min, max etc.
• set-valued subqueries (in, any, all) or test for existence (exists)
• group by clause or distinct clause

In combination with the clause with check option any update or insertion of a row into the
view is rejected if the new/modified row does not meet the view definition, i.e., these rows
would not be selected based on the select statement. A with check option can be named
using the constraint clause.

A view can be deleted using the command delete <view-name>.

19

