What is software testing? 
The goal of the testing activity is to find as many errors as possible before the user of the software finds them. We can use testing to determine whether a program component meets its requirements. To accomplish its primary goal (finding errors) or any of its secondary purposes (meeting requirements), software testing must be applied in a systematic fashion. Testing involves operation of a system or application under controlled conditions and evaluating the results.

Verification and Validation

Verification and Validation (V&V) is a Software Testing activity to enhance quality of the software being built. It is planned and conducted systematically through out the software lifecycle.

· Verification is the checking or testing of items, including software, for conformance and consistency with an associated specification. Software testing is just one kind of verification, which also uses techniques such as reviews, analysis, inspections and walkthroughs. 

· Validation is the process of checking that what has been specified is what the user actually wanted. Validation activity may begin when most or all software functions as per customer expectations. Validation testing provides final accurance that the software meets all functional, behavioural and performance requirements. Usually Black-box testing is used for this activity. 

Verification: Are we building the Project right?

Validation: Are we building the right product?

Debugging Vs Testing
The term bug is often used to refer to a problem or fault in a computer. There are software bugs and hardware bugs.

Software testing should not be confused with debugging. Debugging is the process of analyzing and locating bugs when software does not behave as expected. Although the identification of some bugs will be obvious from playing with the software, a methodical approach to software testing is a much more thorough means of identifying bugs. Debugging is therefore an activity, which supports testing, but cannot replace testing. However, no amount of testing can be guaranteed to discover all bugs.

Common Problems

· Poor requirements – if requirements are unclear, incomplete, too general, or not testable, there will be problems 

· Unrealistic schedule – if too much work is crammed in too little time, problems are inevitable 

· Inadequate testing – no one will know whether or not the program is any good until the customer complains or systems crash 

· Requirements change – requests to pile on new features after development is underway are common 

· Miscommunication – if developers don’t know what is needed or customers have erroneous expectations, problems are guaranteed 

· Poorly documented code – sufficient comments not built into the source code, requirement changes not updated in the impacted documents 

Solutions
· Solid requirements – clear, complete, detailed, cohesive, attainable, testable requirements that are agreed to by all players use prototypes to help nail down requirements. 

· Realistic schedules – allow adequate time for planning, design, testing, bug fixing, re-testing, changes, and documentation; personnel should be able to complete the project without burning out. 

· Adequate testing - start testing early on, re-test after fixes or changes, plan for adequate time for testing and bug-fixing. 

· Stick to initial requirements as much as possible – be prepared to defend against excessive changes and additions once development has begun, and be prepared to explain consequences. If changes are necessary, they should be adequately reflected in related schedule changes. If possible, use rapid prototype during the design phase so that customer can see what to expect. This will provide them a higher comfort level with their requirements decisions and minimize changes later on. 

Communication – require walkthroughs and inspections when appropriate; make extensive use of group communication tools - e-mail, groupware, networked bug-tracking tools and change management tools, intranet capabilities, etc.; ensure that information/documentation is available and up-to-date - preferably electronic, not paper; promote teamwork and cooperation; use prototypes early on so that customers' expectations are clarified.

Testing Services & Types

WS Testing Practice provides a wide services portfolio, from Unit Testing right up to Application Certification. In general testing services can be categorized into three main types, such as:

· Functional Testing 

· Non-Functional Testing 

· Automated Testing - for both functional and non-functional testing 

· Competitive Analysis Testing 

Functional Testing

Testing developed application against business requirements. Functional testing is done using the functional specifications provided by the client or by using the design specifications like use cases provided by the design team. Functional testing covers

· Unit Testing 

· Smoke testing / Sanity testing 

· Integration Testing (Top Down, Bottom up Testing) 

· Interface & Usability Testing (including Independent Focus Groups) 

· System Testing 

· Regression Testing 

· Pre User Acceptance Testing (Alpha & Beta) 

· User Acceptance Testing 

· White Box Testing, Black Box Testing 

· Globalisation and Localisation Testing (Regional Settings, Languages etc.) 

WS’s Testing Practice has 300+ person-years of experience across various types of
Functional testing.

Non-Functional Testing

[image: image22.jpg]


Testing the application based on the clients and performance requirement. Non-functioning testing is done based on the requirements and test scenarios defined by the client. Non-functional testing covers

· Load and Performance Testing 

· Ergonomics Testing 

· Stress & Volume Testing 

· Compatibility & Migration Testing 

· Data Conversion Testing 

· Security / Penetration Testing 

· Operational Readiness Testing 

· Installation Testing 

· Security Testing (Application Security, Network Security, System Security) 

Web Spiders Testing Practice has 175+ person-years of experience across various types of Non-Functional testing.

Automated Testing

Automated testing is an art of converting manual test cases to machine executable code. The output of a test automation project is a (or a set of) test suite, which will be used by testers to verify the application time and again. Test automation is perceived as an efficiency improvement program, which will improve time to market advantage for product development organization.

Automated Testing is automating the manual testing process currently in use. This requires that a formalized "manual testing process" exist in the company or organization. Minimally, such a process includes: 

· Detailed test cases, including predictable "expected results", which have been developed from Business Functional Specifications and Design documentation. 

· A standalone Test Environment, including a Test Database that is restorable to a known constant, such that the test cases are able to be repeated each time there are modifications made to the application. 

Web Spiders Testing Practice has 60+ person-years of Automation Testing experience.

Competitive Analysis Testing

Competitive Analysis can be defined as usability, functionality or a performance evaluation whereby two or more competitive products are compared by simulating an environment where the products are going to be used. (e.g. IE Vs Netscape, Oracle DB Vs. SQL Server Vs DB2)

Web Spider’s Competitive Analysis Testing ensures that your product fits in perfectly in its competitive market. Our analysis matrix makes sure that you get the most out of the analysis, whether you are a manufacturer or a buyer. For Product developers our benchmark testing services provide results that form the basis for quality improvement or as a sales tool to show superiority of their products. For buyers, it’s an effective way to help them make the right purchase decision.

Before starting our analysis, we ensure that the right measurement parameters are identified on the basis of which the analysis is carried out. In order to understand this, we encourage the active participation of our customers. Once these are decided, our QA experts do the rest.

Technology Based Software Testing
1. GUI testing

Testing Considerations for GUI 

Communication; aspects to be tested are:
• Tool tips and status bar 

Missing information
• Enable/Disable toolbar buttons
• Wrong/misleading/confusing information
• Help text and Error messages
• Training documents 

Dialog Boxes; aspects to be tested are: 
• Keyboard actions
• Mouse actions
• Canceling
• Okaying
• Default buttons
• Layout error
• Modal
• Window buttons
• Sizable
• Title/Icon
• Tab order
• Display layout
• Boundary conditions
• Sorting
• Active window
• Memory leak 

Command structure; aspects to be tested are: 
• Menus
• Popup menus
• Command Line Parameters
• State transitions

Program rigidity; aspects to be tested are: 
• User options
• Control
• Output
Preferences; aspects to be tested are: 
• User tailor-ability 
• Visual preferences 
• Localization 

Usability; aspects to be tested are: 
• Accessibility
• Responsiveness
• Efficiency
• Comprehensibility
• User scenarios
• Ease of use

Localization; aspects to be tested are: 
• Translation
• English-only dependencies
• Cultural dependencies
• Unicode
• Currency
• Date/Time
• Constants
• Dialog contingency

2. Application Testing 

Testing Considerations for Application Testing 

	Applications
	Testing

	C, C++ Applications
	 

	 
	Memory leak detection

	 
	Code coverage

	 
	Static and dynamic testing

	 
	Test coverage analysis

	 
	Runtime error detection

	 
	Automated component testing

	 
	Measurement of maintainability, portability, complexity, standards compliance

	 
	Boundary conditions testing

	Java Applications/Applets
	 

	 
	Automated component testing

	 
	Functional testing

	 
	Performance testing

	 
	Applet/application testing

	 
	Code coverage

	 
	Boundary conditions testing

	Win 32-based Applications
	 

	 
	Memory leak detection of win32 programs

	 
	Performance testing

	 
	Stress testing of Windows applications and system clients


3. Application Programming Interface (API) testing 

Testing Considerations/Issues 

The following tasks can be automated:

1. Test-code builds 

2. Test-suites execution 

3. Report generation 

4. Report publishing 

5. Report notification 

6. Periodic execution of test-suites 

7. A tool for test automation should be identified very early in the project. 

8. A simulator (that services the API calls) should be developed by the testing team. In the absence of this simulator, there is a dependency on a Server (not developed by the API development team). 

Validating the APIs for user-friendliness:

· Meaningful names 

· Concise and short names 

· Number of arguments 

· Easy-to-read names 

4. Middleware Testing 

· Functional testing 

· Interoperability testing 

· Performance testing 

5. Database/Backend (& database applications) testing 

Testing Considerations/Issues 

Apart from testing (verify/validate this) the application the following needs to be considered for databases:

· Distributed Environment 

· Performance 

· Integration with other systems 

· Security Aspects 

Description/Sub-tasks 

Boundary conditions testing (Data); aspects to be tested:

· Dataset 

· Numeric 

· Alpha 

· Numerosity 

· Field size 

· Data structures 

· Timeouts 

Accuracy/Integrity testing (Data); aspects to be tested: 
Boundary conditions testing (Data); aspects to be tested:

· Calculations - Reports 

· Calculations - Backend 

· Divide by zero 

· Truncate 

· Compatibility 

· Test data 

· Data consistency 

Database connectivity; aspects to be tested: 
Database connectivity; aspects to be tested: 

· Save 

· Retrieval 

Database schema testing; aspects to be tested: 
Database connectivity; aspects to be tested: 

· Databases and devices 

· Tables, Fields, Constraints, Defaults 

· Keys and Indices 

· Stored procedures 

· Error messages 

· Triggers, Update 

· Triggers, Insert 

· Triggers, Delete 

· Schema comparisons 

Security testing; aspects to be tested 
Security testing; aspects to be tested

· Login and User security 

6. Web Site/Page Testing 

	Applications
	Testing

	Link and HTML Testing
	 

	 
	Detecting HTML compatibility problems

	 
	Checking Cascading Style Sheets

	 
	Checking link and content

	 
	Checking HTML syntax / Validating HTML documents

	 
	Detecting broken/dead links

	 
	Web site performance analysis

	Functional Testing
	 

	 
	Web site functional testing

	 
	Testing for completeness and consistency of web pages

	Performance Testing
	 

	 
	Load testing of web based systems

	 
	Reliability, performance and scalability testing of web applications

	 
	Load and performance testing of web server


Testing Life Cycle 
Application Testing life cycle

This life cycle is used for standard applications that are built from various custom technologies and follow the normal or standard testing approach. The Application or custom-build Lifecycle and its phases is depicted below:

	Test Requirements 

	[image: image1.png]



	• Requirement Specification documents
• Functional Specification documents 
• Design Specification documents (use cases, etc) 
• Use case Documents 
• Test Trace-ability Matrix for identifying Test Coverage



	

	Test Planning

[image: image2.png]



• Test Scope, Test Environment
• Different Test phase and Test Methodologies
• Manual and Automation Testing
• Defect Mgmt, Configuration Mgmt, Risk Mgmt. Etc
• Evaluation & identification – Test, Defect tracking tools



	Test Environment Setup

[image: image3.png]



• Test Bed installation and configuration
• Network connectivity’s
• All the Software/ tools Installation and configuration
• Coordination with Vendors and others

Test Design

[image: image4.png]



• Test Traceability Matrix and Test coverage
• Test Scenarios Identification & Test Case preparation
• Test data and Test scripts preparation
• Test case reviews and Approval
• Base lining under Configuration Management

Test Automation

[image: image5.png]



• Automation requirement identification
• Tool Evaluation and Identification.
• Designing or identifying Framework and scripting
• Script Integration, Review and Approval
• Base lining under Configuration Management



	Test Execution and 
Defect Tracking

[image: image6.png]



• Executing Test cases
• Testing Test Scripts
• Capture, review and analyze Test Results
• Raised the defects and tracking for its closure



	Test Reports 
and Acceptance

[image: image7.png]



• Test summary reports
• Test Metrics and process Improvements made
• Build release
• Receiving acceptance




Automation Testing life cycle

Advantages of this automated software using the above AST life cycle.

· High Quality to market 

· Low Time to market 

· Reduced testing time 

· Consistent test procedures 

· Reduced QA costs 

· Improved testing productivity 

· Improved product quality 

	AST Requirements

	[image: image8.png]



	• Requirement / Functional Specification documents
• Design Specification documents (use cases, etc)
• Test Traceability Matrix for identifying Test Coverage
• Functional/ Non-Functional and test data requirements
• Test phases to be automated and % of automation



	

	AST Planning

[image: image9.png]



• Automated Software Testing (AST) Scope
• Tool Evaluation and identification
• AST Methodologies and Framework
• Prepare and Base lining Scripting standard and ASTPlan



	AST Environment Setup

[image: image10.png]



• AST Test Bed installation and configuration
• Network connectivity’s
• All the Software/ tools Licenses, Installation and configuration
• Coordination with Vendors and others



	AST Design

[image: image11.png]



• Test Script and test data preparation
• Test scripts / test data review and unit testing
• Integration Testing Test scripts and testing
• Base lining under Configuration Management



	AST Execution and 
Defect Tracking

[image: image12.png]



• Executing AST Test Suit
• Capture, review and analyze Test Results
• Defects reporting and tracking for its closure



	AST Maintenance Reports 
and Acceptance

[image: image13.png]



• AST Results and summary reports
• Test Metrics and process Improvements made
• Base lining of AST Test suits/ scripts/ test date etc for maintenance phase
• Getting Acceptance




Package Testing life cycle

Testing life cycle followed for all the packaged applications like Oracle, SAP, Siebel, CRM tools, Supply Chain management applications, etc are detailed in the below diagram.

	Project Preparation

	[image: image14.png]



	• Identifying the business processes
• Organization of the project team
• Setting up the communication channel
• Kick start the project
• Identifying the infrastructure availability
• Reporting structure and project co-ordination



	

	Business Blueprinting

[image: image15.png]



• Requirement Study
• Identifying the business rules
• Mapping the business processes
• Identify the test conditions
• Setting up the test environment for the system
• Forms the input needed for the configurations



	Realization

[image: image16.png]



• Configuration & Customization 
• Activating the business rules 
• Development of certain flows 
• Identifying certain flows not in the standard 
• Forming the system configurations 
• Unit Testing



	Final Preparation

[image: image17.png]



• Uploading the master data 
• End user training 
• Simulating all the flows 
• Tie-up between interfaces 
• Operational Readiness Testing and UAT 
• Sign-off



	Cut over, Go-live 
and Support

[image: image18.png]



• Migrate to new system 
• Transfer all legacy business applications 
• Communicate deployment status. 
• Support new system 
• Transfer ownership to system owner 
• Take customer acceptance after production deployment




Test Deliverables & Metrics 
Given below is the generic service delivery model followed by Web Spiders Practice.

	ONSITE

	[image: image19.png]



	• Resources at onsite location 
• Complete project execution onsite 
• Project reporting to Onsite Manager



	

	ONSITE - OFFSHORE 

[image: image20.png]



• Resources at onsite and offshore locations 
• Project execution at both onsite and offshore
• Project transition to offshore 
• Project reporting to Offshore Manager 
• Project backed by proven processes methodologies and support functions 



	OFFSHORE

[image: image21.png]



• Entire project execution offshore 
• Project reporting to Offshore Manager 
• All the Software/ tools Installation and configuration
• Project backed by proven processes methodologies and support functions 




Web Spiders selects the ideal delivery model based on each customer’s specific business case.

A very high-level workflow of the interaction process between the customer and Web Spiders is illustrated below:

1. The client sends the introductory mail mentioning the outline of the QA job that he/she is looking for. 

2. The QA Manager goes through it and responds with a set of queries. 

3. The client responds and asks for the test plan and sample test cases. 

4. The QA Manager prepares the test plan and mails it along with a few sample test cases. 

5. The test plan is reviewed and finalized by both the parties. 

6. The QA Manager discusses the project with the team members and the test cases are prepared. 

7. Test cases are executed for a particular version of the product, reviewed and mailed to the client. 

8. The bugs are approved by the client and debugged by his/her development team. 

9. Depending on the project requirements, the client releases the next version of the project for QA and the test plan and test cases are updated, accordingly. 

10. The same process is repeated. 

Once all the bugs have been reported, and the project is re-tested and de-bugged, the QA process concludes.

Test Deliverables & Metrics

Test Deliverables

There are different test deliverables at every phase of the SDLC. These deliverables are provided based on the requirement once before the start of the test phase and there are other deliverables that are produced towards the end/after completion of each test phase. Also there are several test metrics that are collected at each phase of testing. Below are the details of the various test deliverables corresponding to each test phase along with their test metrics.

The standard deliverables provided as part of testing are:

· Test Trace-ability Matrix 

· Test Plan 

· Testing Strategy 

· Test Cases (for functional testing) 

· Test Scenarios (for non-functional testing) 

· Test Scripts 

· Test Data 

· Test Results 

· Test Summary Report 

· Release Notes 

· Tested Build 



Test Metrics

There are several test metrics identified as part of the overall testing activity in order to track and measure the entire testing process. These test metrics are collected at each phase of the testing life cycle /SDLC and analyzed and appropriate process improvements are determined and implemented as a result of these test metrics that are constantly collected and evaluated as a parallel activity together with testing both for manual and automated testing irrespective of the type of application. The test metrics can be broadly classified into the following three categories such as:

1. Project Related Metrics – such as Test Size, # of Test Cases tested per day –Automated (NTTA), # of Test Cases tested per day –Manual (NTTM), # of Test Cases created per day – Manual (TCED), Total number of review defects (RD), Total number of testing defects (TD), etc

2. Process Related Metrics – such as Schedule Adherence (SA), Effort Variance (EV), Schedule Slippage (SS), Test Cases and Scripts Rework Effort, etc.

3. Customer related Metrics – such as Percentage of defects leaked per release (PDLPR), Percentage of automation per release (PAPR), Application Stability Index (ASI), etc. 

